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Abstract

\Glider" dynamics in cellular automata (CA), where co-

herent con�gurations emerge and interact, provide a stark

instance of self-organization in a simple system. Such be-

haviour was classi�ed as class 4 or complex (as opposed

to ordered or chaotic) by Wolfram[12], and was one of the

original motivations for Arti�cial Life[7]. Because glider

dynamics is relatively rare in CA rule spaces, much study

has focused on the few known complex rules. However, a

more general theory would bene�t from many examples,

which are now available for 1d CA found by the methods

described.

Cellular automata rules can be classi�ed automatically for

a spectrum of ordered, complex and chaotic dynamics,

by a measure of the variance of input-entropy over time.

The method allows screening out rules that display

glider dynamics and related complex rules, giving an

unlimited source for further study. The method also

shows the distribution of rule classes in the rule-spaces of

varying neighbourhood sizes. The classi�cation produced

seems to correspond to our subjective view of space-time

dynamics, and to global measures on the \bushiness" of

typical sub-trees in attractor basins, characterized by the

distribution of in-degree sizes in their branching structure.

The paper explains the methods and presents results for

1d CA.

1 Introduction

Cellular automata (CA) are a much studied class of
discrete dynamical systems where a regular array of
\cells" may take discrete values, and each cell updates
in parallel according to the values in its standard local
neighbourhood according to a universal rule. In this
paper we consider binary, �nite, CA with system size
n, neighbourhood size k, and periodic boundary con-
ditions. A state of the system is the pattern1 of 1s
and 0s across the array at a given time-step. The sys-
tem traces deterministic trajectories through its state-
space within which emergent patterns of 1s and 0s are
observed with qualities depending on the dynamical

1Space-time patterns are shown as back/white (1,0). Alter-

natively cells are \colored" according to their update neighbour-

hood. If such �gures are not presented in color read greyscale.

rule2. The trajectories typically merge with others
forming trees rooted on attractor cycles. State-space
is thus linked into a set of basins of attraction[13].

Figure 1: Right: The

space-time pattern of the 2d

game-of-Life on a 55 � 55

grid, shown in a 3d isomet-

ric projection. 2d time-steps

stack below each other, and

appear as if looking up at

a transparent shaft. Gliders

show up as diagonal struc-

tures. The initial state is !

To show up the dynamics the

color of cells relate to the up-

date neighbourhood instead

of the value.

Below: A particular time-

step. Dark cells are \alive",

light cells \dead".

Questions that arise are how to characterise the
space of all possible rules according to (1) emergent
space-time patterns and (2) the attractor basin
topology, and how 1 and 2 are related.

Conway's well known \game-of-Life"[2] is a 2d CA
that supports coherent periodic space-time con�gura-
tions that propagate and interact on a quiescent back-
ground, illustrated in �gure 1.

The menagerie of con�gurations found have been

2CA rules in this paper are speci�ed according to the lookup

table of the outputs of 2k neighbourhoods, arranged in descend-

ing order according to their binary values from left to right[10].

The outputs make a binary number with (22)k bits, given in

hex, or decimal if k � 3. Note that odd k corresponds to radius

(k � 1)=2, even k is asymetric with an extra cell on the right.
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grouped under various names such as gliders, glider-
guns, eaters, blinkers etc. Interactions between
glider streams can be contrived to achieve univer-
sal computation[2]. Langton[7] suggests that such
\virtual state machines" may provide the logic for
arti�cial life embedded in CA.

a)2e 0e 28 00

b)2e 0d 0c 01

c)ae 8d 2c 21
d)ae 8d 2c 21

e)aa 65 6c a1

f)aa 55 66 a5

Figure 2: Typical 1d space-time patterns of a family of k=5

rules (shown in hex) from the same random initial state, n=150.

Time proceeds from the top down. The rules a, b, c, d, e, f,

range through ordered-complex-chaotic dynamics. a, b, d, f, cor-

respond to Wolfram's classes 1,2,4,3, where \d" (class 4) shows

sustained glider interactions. Starting with this rule, the other

rules where derived by tuning the Z parameter[13].

Some 1d CA rules exhibit analogous emergent struc-
tures, against backgrounds that are often periodic as
well as quiescent. These coherent structures are de-
scribed variously as solitary waves, gliders, virtual au-
tomata, information structures, particle-like structures
and domain boundaries or defects; for simplicity they
are referred to here as gliders. The emergence of glid-
ers would in principle allow the system to be described
and predictions made at a higher level, on the basis of
observed glider collision rules without reference to the
underlying low level CA rules. Gliders may eject or ab-
sorb a regular glider stream, or spontaneously combine
to form compound gliders, which then interact at yet
higher levels of description. The process could unfold
without limit in large enough systems. Glider dynam-
ics in CA provide a stark instance of self-organization
in a simple system resulting from many local small
scale parallel processes.

Glider dynamics can be approached from a number
of perspectives, Wolfram's class 4 behaviour[12],
computation[11], phase transitions between order
and chaos[8], and discrete analogues of Prigogine's
far-from-equilibrium dissipative structures [9]. In CA
the formation, persistence and interaction of gliders

can be traced at the lowest level of the system's
basic components and their local interactions which
are completely de�ned. This ability to see two
levels of behaviour simultaneously, the underlying
and emergent, allow insights into the mechanics of
self-organization (e.g.[6]).

a) Ordered dynamics

(class 2), about 100-

time steps.

Rule af d1 db 47

b) Complex dynam-

ics (class 4), about

500 time-steps.

Rule 6c 1e 53 a8

c) Chaotic dynamics

(class 3), about 140

time-steps.

Rule 99 4a 6a 65

Figure 3: Typical 1d CA Space-time patterns showing ordered,

complex and chaotic dynamics. Time proceeds from the top

down. Alongside each space-time pattern is a plot of the input-

entropy described in section 3. The horizontal axis shows 0-

max entropy. Note that only complex dynamics (b) exhibit high

variance of this plot because glider collisions make new gliders.

System size n=150 with periodic boundary conditions, neigh-

bourhood size k=5. The same random seed was used in each

case.

How simple can a CA be and yet support \interest-
ing" glider behaviour, and what is this quality? How
and why is such behaviour able to emerge? What
quantitative measures can be used to identify glider dy-
namics? To answer these questions it would be helpful
if a large sample of rules able to support gliders were
available for study.
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Such rules are supposed to be rare[11]. Most rules
are either ordered or chaotic, though ordered rules be-
come increasingly rare for larger k. In k3 rule-space
the only two sets of glider rules that occur (rule 54
and 110, and their equivalents[13], see �gure4) have
been the focus of particular study (e.g. [6]).

a)k3 rule 110 b)k3 rule 54

Figure 4: Space-time patterns of the only rules in k3 rule-

space that support interacting gliders, rule 54 and 110 (and their

equivalents[13]). The rules are in decimal. n=150, about 200

time-steps are shown from random initial states. The color of

cells relate to the update neighbourhood instead of the value.

In both rules gliders are embedded in a complicated background

patterns. For a clearer picture, these backgrounds have been

�ltered out by suppressing the relevant colors.

We will refer to glider rules as \complex" in the sense
of Wolfram[10], i.e. those rules yielding localized prop-
ergating structures interacting within long transients,
where the interactions are clearly \interesting". The
human mind is uniquely quali�ed to recognize com-
plex patterns, and to separate the interesting from the
trivial, but it would be extremely useful to have mea-
sures that corresponded closely to our subjective clas-
si�cation. An entropy variance measure on the dynam-
ics seems to achieve this end, and allows an unlimited
source of complex rules to be found, and is further able
to characterize rule-space relative to our subjective no-
tions of order, complexity and chaos.

Figures 3(a,b and c) illustrate a range of CA be-
haviour, ordered, complex and chaotic. Only complex
dynamics (b) exhibits high input-entropy variance (ex-
plained in sections 3-5), because glider collisions make
new gliders. Ordered (a) and chaotic (c) dynamics
both quickly settle to low variance. In the case of
(a) because colliding gliders annihilate and the system
quickly reaches its attractor at a low entropy level. In
the case of (c) because the high entropy characteristic
of chaos necessarily results in low variance.

This paper �rst discusses glider dynamics in 1d CA
with examples. The automatic method for classifying

rule-space is presented and the resulting rule samples
are described. These local measures on trajectories
are compared with global measures of the characteris-
tic\bushiness" of sub-trees in attractor basins. Finally,
a relationship between attractor basins and glider in-
teractions is proposed.

2 Gliders in 1d CA

How a rule is placed within a notional order-
complexity-chaos space has depended largely on our
subjective appraisal of typical emergent space-time
patterns. Each CA rule self-organizes its patterns in
a characteristic way, and these are often recognizable
given our talent for pattern recognition. For k � 5
rules a characteristic structure to the pattern is
apparent even when the space-time patterns appear
chaotic. This becomes less obvious for larger k. The
characteristic pattern structure of di�erent rules can
be analyzed in formal language theory as a \regular
language" with a vocabulary made up of bit sequences
and a \grammar" made up of succession rules be-
tween sequences[12], and by a related "computational
mechanics" approach[6].
Certain space-time patterns appear especially inter-

esting or intriguing. Periodic sub-patterns or gliders
may emerge, move across a regular background, and
interact with other gliders in a particle-like manner.
Glider dynamics corresponds to Wolfram's com-

plex class 4 behaviour in his classi�cation of CA
dynamics[11]. Wolfram orders his classes according to
an alternative notion of complexity; by the increasing
complexity of typical space-time patterns as measured
in formal language theory[12], and draws analogies
with classical continuous dynamical systems in terms
of the attractors typical of each class. His classes are
as follows:
Class CA dynamics evolves towards... Dynamical systems analogue

1. A spatially homogeneous state... Limit points.

2. A sequence of simple stable

or periodic structures................. Limit cycles

3. Chaotic aperiodic behaviour....... Chaotic (strange) attractors

4. Complicated localized

structures, some propagating...... Attractors unspeci�ed

Langton and others have argued correctly that Wol-
fram's class 4 more naturally belongs between classes 2
and 3, at a phase transition between order and chaos,
which can be traversed by tuning the � parameter[8],
though for binary rules it has been shown that tuning
the Z parameter[14] gives a �ner correspondence with
observed behaviour. Z also relates behaviour to the
topology of attractor basins.
Many ordered rules have both limit points and short

limit cycles (though one or the other may predomi-
nate), suggesting that class 1 and 2 may usefully be
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are combined. For these reasons the classi�cation is
readjusted as follows:

ordered (class 1-2) - complex (class 4) - chaotic3 (class 3)

What are the essential features of glider behaviour?
Glider dynamics occurs if a limited set of gliders
emerge from random initial states, and if the inter-
actions between gliders persist for an extended time,
which requires that at least some glider collisions
create new gliders. The gliders propagate at various
velocities up to a maximum, the system's speed of
light. At zero velocity a \glider" is static. Gliders exist
against a uniform or periodic space-time background
which of necessity has simultaneously emerged. This
regular background (or domain) may be simple, such
as a checkerboard, or a more complicated pattern
(see �gures 5(a-d). Backgrounds may be �ltered as in
�gures 4 and 8 to show up gliders more clearly4.

Although there are borderline cases, space-time pat-
terns with "interesting" glider interactions are gener-
ally easily recognized in contrast to patterns that sta-
bilize rapidly to �xed points or short periods on the one
hand, or where chaotic patterns persist on the other.
The borderline cases verge either on ordered or chaotic
behaviour. Chaotic behaviour may also contain dis-
tinct chaotic backgrounds or domains [3], where �lter-
ing is required to uncover domain walls analogous to
gliders.

a)e0 89 78 01 b)7e 86 96 de c)ad 9c 72 32 d)1c 2a 47 98

Figure 5: Gliders with various velocities and backgrounds. The
k=5 rule numbers are shown in hex.

Gliders may be regarded as solitary waves within a
background. Gliders may have the special property of
solitons [1], preserving their shape and velocity after
interacting with other solitons. For a neighbourhood
of radius r, glider velocity varies from 0 to a maximum
of r cells per time step towards the left or right. A
glider con�guration that repeats at each time-step, i.e.

3Note that the terms \chaos" and \chaotic" throughout this

paper are used by analogy only to their meaning in continuous

dynamical systems and chaos theory. Chaos in �nite CA can-

not conform to this strict de�nition although there are many

common properties, for example sensitivity to initial conditions.
4Filtering[3, 6] in DDLab[15] is done by suppressing the dis-

play of cells that updated with reference to the most frequently

occurring neighbourhoods.

with period one, is limited to velocities of 0,1,2,...,r per
time-step. Gliders with periods greater than one may
have intermediate fractional velocities.

a)89 ed 71 06 b)89 ed 71 06 c)b5 1e 9c e8 d)89 ed 71 06

Figure 6: Examples of glider-guns. The k=5 rule numbers are

shown in hex.

A glider's attributes are the background pattern and
spatio-temporal period (on both sides of the glider),
the glider's temporal period and velocity, its changing
diameter, and the list of its repeating con�gurations.
The same description might be applied recursively to
each sub-glider component of a compound glider.

Collisions between two glider types often result in a
third glider type (or more). One or both of the gliders
may survive a collision with a possible shift in trajec-
tory, or both gliders may be destroyed. In some cases a
collision initially results in a chaotic interaction phase,
before the �nal outcome emerges. The outcome of a
collision is sensitive to the point of impact relative to
the space-time period of each glider.

a)89 ed 71 06 b)b5 1e 9c e8 c)b5 1e 9c e8

Figure 7: A compound glider, a glider with a period of 106

time-steps, and a compound glider-gun. The k=5 rule numbers

are shown in hex.

A glider generally represents a dislocation or defect
of varying width in the background, which is often out
of phase on either side of the glider, analogous to frac-
ture planes in a crystal lattice. Alternatively, a glider
may be seen as the zone that reconciles two out-of-
phase backgrounds. A glider may separate two en-
tirely di�erent backgrounds, acting as the boundary,
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as in �gure 6(d). Gliders that eject a stream of sub-
gliders at regular intervals, as in �gure 6, and gliders
that survive by absorbing a regular glider stream, as
in �gure 5(d), are relatively common. They are anal-
ogous to \glider-guns" and \eaters", the components
for the \game-of-Life" universal computer[2]. Because
a regular glider stream is essentially the same as a reg-
ular periodic background, a glider-gun creates a back-
ground, and an eater absorbs a background. Glider-
guns/eaters are thus equivalent to a glider forming the
boundary between two backgrounds.
Both the period and diameter of a glider may be

considerable. The diameter may show a large variation
within the period. Clearly gliders can only emerge in
systems large enough to contain them, so that the sam-
ples described in section 5 based on n=150 are biased
towards �nding relatively small diameter gliders.
The existence of compound gliders made up of sub-

gliders colliding periodically may be expected in large
enough systems. Compound gliders could combine into
yet higher order structures[7], and the process could
unfold hierarchically without limit. The example in
�gure 7(a) shows a compound glider made from two
independent gliders locked in a cycle of repeating col-
lisions.
Once gliders have emerged, CA dynamics may in

principle be described at a higher level, by glider colli-
sion rules as opposed to the underlying CA rules.

3 Input-entropy

A special case of block probability/entropy[11] is input
frequency/entropy. The frequency with which each of
the neighbourhoods in the rule-table is \looked up" at
a given time-step can be represented by a histogram as
in �gure 8(right), which distributes the total of n� w

lookups among the 2k neighbourhoods (shown as the
fraction of total lookups), where n=system size, w=the
window of time steps de�ned (w=10 in �gure 8), and
k=neighbourhood size.
The Shannon entropy of the lookup frequency his-

togram, the \input-entropy" S at time-step t for one
time-step (w=1), is given by

St = �

2
kX

i=1

�
Qt

i

n
� log

�
Qt

i

n

��

Where Qt
i
is the lookup frequency of neighbourhood

i at time t. In practice, to smooth the measures, they
are taken over a moving window of time-steps (w=5
in the automatic sample). Example snapshots of the
changing input-frequency histogram are given in �g-
ures 8 and 9.

In a random initial state the di�erent k- blocks oc-
cur with equal probability. The start entropy will be
correspondingly high. Below we discuss the typical
evolution of the input frequency histogram and input
entropy for successive iterations of the CA, for ordered,
chaotic and complex dynamics.

Figure 8: The complex 1d CA, k = 5, rule 36 0a 96 f9, n = 150.

Left: The space-time pattern colored according to each cell's

neighbourhood, with the background colors (the high bars in

the histogram) �lterd out.

Centre: The input-entropy plot. The horizontal axis shows 0-

max entropy. The vertical axis shows time progressing from the

top down.

Righ: The lookup frequency histogram. The vertical axis shows

the 32 k5 neighbourhoods in decimal equivalent order, from 0

(bottom) to 25 � 1 = 31 (top). The horizontal axis shows the

look-up (k-block) frequency 0-max averaged over 10 time-steps

a)Ordered b)Complex c)Chaotic

Figure 9: The lookup frequency histogram for the same rules

shown in �gure 3. (a) ordered, (b) complex and (c) chaotic.

n=150, w=10. The vertical axis shows the 32 k5 neighbourhoods

in decimal equivalent order, from 0 (bottom) to 25�1 = 31 (top).

The horizontal axis shows the look-up (k-block) frequency 0-max

averaged over 10 time-steps.

Ordered Dynamics

In ordered dynamics the lookup frequency histogram
will rapidly become highly unbalanced, with most
neighbourhoods never looked at (their lookup fre-
quency = 0). The few remaining high frequencies
settle on constant or periodic values. The entropy
will settle at a low constant or periodic value, cor-
responding to a �xed point or short cycle attractor.
Ordered behaviour produces extremely short and
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bushy transient trees with a high density of states
without predecessors (G-density). Ordered rules
decrease disorder and entropy.

Complex Dynamics

In complex dynamics, the frequency histogram be-
comes unbalanced, with large erratic uctuations,
reected in the entropy curve. As in ordered be-
haviour, a proportion of neighbourhoods are never
looked at again after the initial sorting out phase.
After an extended time the system generally settles
onto a short attractor cycle. The high frequency
neighbourhoods correspond to the emergent back-
ground. The low frequency neighbourhoods to the
interacting gliders.

Glider dynamics is subject to two countervailing ten-
dencies. On the one hand a tendency towards order be-
cause of the dominant periodic background(s), but the
zones of order are mobile, their boundaries form the
moving particles or gliders. When these collide there
is a tendency toward chaos. The collisions may form a
temporary zone of chaotic dynamics before new gliders
emerge.

In systems of the order of size considered here, order
or chaos may predominate at di�erent times causing
the entropy to vary. For large networks where colliding
and non-colliding zones co-exist, the entropy variance
will be reduced, to zero in the limit of in�nite size.

A measure of the variability of the input-entropy
curve is its variance or standard deviation from the
mean, high entropy variance is then a sure sign of com-
plex space-time dynamics.

High entropy variance is not only characteristic of
glider dynamics but also of other less frequent types
of complex dynamics. For example two chaotic co-
existing (competing) domains which are qualitatively
di�erent, having di�erent block probabilities will
produce an erratic entropy curve as one or the other
domain becomes dominant. The boundary between
the chaotic domains may be seen an a di�erent type
of particle lacking the regularity of a glider. Such
particles may be isolated by �ltering out the chaotic
domains[3]. A related type of complex dynamics
occurs when a chaotic domain co-exists with glider
dynamics or with just a regular background.

Chaotic Dynamics

In chaotic dynamics, the lookup frequency histogram
will uctuate irregularly within a narrow band of low
values, and the entropy will uctuate irregularly within
a narrow high band, corresponding to dynamics on
very long transients or cycles, analogous to strange at-
tractors in continuous dynamical systems. Transient

trees will be sparsely branched thus will tend to be
very long with relatively low G-density. Chaotic rules
increase or conserve disorder and entropy.

4 Entropy-density signatures

Entropy-density plots for a number of complex rules
are shown in �gure 10. Input-entropy is plotted against
the density of 1s relative to a moving window of time-
steps. Each rule produces a characteristic cloud of
points. The clouds lie within a parabolic envelope be-
cause high entropy is most probable at medium den-
sity, low entropy is most probable at either low or high
density. For complex rules the clouds have a marked
vertical extent(i.e. high variance) because the input-
entropy varies signi�cantly. Each complex rule pro-
duces a plot with its own distinctive signature. By
contrast, chaotic rules will give a at compact cloud at
high entropy (at the top of the parabola).

a)k5 rules 6c 1e 53 a8 & 36 0a 96 f9 b)several complex k5 rules

Figure 10: Entropy-density scatter plots: input-entropy (ver-

tical axis) against the density of 1s relative to a moving window

of time-steps w=10. k=5, n=150. About 1000 time-steps from

several random initial states for each rule, which of which has its

own distinctive signature. Note the high variance of the input

entropy.

(a) The rules shown in �gures 3 and 8.

(b) A number of complex rules from the automatic sample.

For ordered rules the plot also has a large vertical
extent as the entropy falls o�, but there are very few
data points because the system moves very rapidly to
an attractor.

Gutowitz[5] has also shown entropy-density plots for
large samples of rule-space, but his plots show a single
point for each rule where the measures on that rule
have settled down, whereas the plots shown here focus
on the transient history of the system. These plots
distinguish order, complexity and chaos by the vertical
extent and density of the cloud.

6



5 Automatically classifying

rule-space

To distinguish ordered, complex and chaotic rules au-
tomatically the mean input-entropy taken over a span
of time steps is plotted against the standard deviation
of the input entropy. The standard deviation is given
by,

� =

rP
n

i=1
x2
i

n

where xi = deviation of each measure from the mean,
and n = number of measures. The variance = �2.

17690 k=5 rules

Figure 11: Bottom: A scatter plot of mean entropy (vertical

axis) against standard deviation of the entropy for a random

sample of 17680 k=5 rules, n=150. The color coding indicates

frequency (as below). Top: The same plot laid horizontally with

a third (vertical) axis showing the frequency of points falling

within a 128x128 grid. Chaotic rules are concentrated in the top

left "tower", ordered rules in the "ridge" close to the y-axis with

lower mean entropy.

In the following results for k=5, 6 and 7 rules, the
input-entropy was measured over a moving window of
5 time-steps (w=5). The system was run for 430 time-
steps from a random initial state. The measures were
only taken into account for the last 400 time-steps,
the �rst 30 were ignored to allow the system to evolve
beyond its initial sorting out phase. The mean input-
entropy, and the standard deviation from this mean,
were calculated relative to these 400 time-steps. This

Figure 12: Mean entropy - standard deviation scatter plots

as in �gure 11. Top: k=6, sample=15425. Bottom: k=7, sam-

ple=14221. Note that as k increases, ordered rules, and complex

rules to a lesser extent, become less probable. Complex rules are

spread in the area to the right with higher standard deviation.

procedure was repeated 5 times from di�erent random
initial states for each rule. The measures were aver-
aged and a point was plotted of mean input-entropy
against the standard deviation of the entropy as shown
in �gure 11 (below).

Rules (and initial states) were selected at random by
setting a 1 or 0 with equal probability for each entry
in the rule's look-up table (and each bit in the initial
state).

Figures 11 and 12 present the plots for k=5, 6 and
7 rules. The sample sizes are as follows; 17680 k=5,
15425 k=6, 14221 k=7. To see the distribution of rules,
the plots include an extra axis, making a 2d histogram,
representing the number of rules falling within blocks
on a 128x128 grid overlaid over the scatter plot.

Looking at the k=5 2d histogram, the \tower" in
the upper left represents chaotic rules with low stan-
dard deviation and high mean entropy. The ridge on
the left represents ordered rules with low standard de-
viation and a spread of lower mean entropy. There
is a low diagonal valley between the tower and the
ridge representing a distinct boundary. Rules to the
right of the plot, with higher standard deviation are
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complex rules. There is not a sharp boundary with
ordered and chaotic rules; as the standard deviation
decreases glider interactions become more dense with
longer transients verging on chaos, or less dense with
shorter transients verging on order. Any standard de-
viation above the maximum scale has been reset to
the maximum of 1.8. The k=6 and k=7 plots show a
greater frequency of chaotic rules and a declining fre-
quency of ordered and complex rules as k increases.
The decrease in ordered rules is more marked.
The rule samples and measures, including each rule's

� and Z parameters, were saved to �le sorted by de-
creasing standard deviation, and decreasing mean en-
tropy for each measure of standard deviation. Exmples
of complex rules from the samples are shown in �gure
13. More examples are presented in [16], and are all
available with the DDLab software[15].

k=5 k=6 k=7

Figure 13: Examples of k=5, 6 and 7 complex space-time pat-

terns, with high standard deviation, from the automatic sam-

ples. n=150, 150 times-steps from random initial states. Cells

are colored according to the neighbourhood.

To check whether the expected dynamics (recognized
subjectively) corresponds to the measures as plotted,
the dynamics of particular rules at di�erent positions
on the plots may be examined very e�ciently in DD-
Lab, for example with a mouse click on the scatter
plot. Preliminary scans indicate that the expected be-
haviour is indeed found, but further investigation is
required to properly demarcate the space between or-
dered, complex and chaotic rules and to estimate the
proportion of di�erent rule classes for di�erent k.

The capability to generate the automatic samples is
available in DDLab[15]. This may be done for larger
system size n and and neighbourhood k, and the var-
ious other parameters for generating the samples can
be adjusted.

Input entropy is a local measure on the space-time
patterns of typical trajectories. The distribution of the
rule samples according to these local measures may
be compared with global measures on attractor basin
topology, G-density and the in-degree frequency (sec-
tion 6 below). A preliminary scan indicates a strong re-
lationship between these global measures and the rule
sample input-entropy plots.

6 Attractor Basin Topology

measures

For CA rules in general, the quality of dynamical be-
haviour from ordered to chaotic is reected by the
topology5 of attractor basins in the sense of the char-
acteristic \bushiness" of subtrees, and the comparative
length of transients, attractors etc. This characterizes
the degree of convergence of dynamical ow seen in at-
tractor basins, or the degree of dissipation viewing the
CA as a dissipative dynamical system.

Consider a transient sub-tree with n vertices linked
by n-1 edges. In the space of all possible topologies
there are two extreme cases. Maximum convergence
occurs where n-1 edges converge in one step onto
a single vertex. Here the G-density, the density of
garden-of-Eden states (those without predecessors)
is close to 1. Minimum convergence occurs where
the edges are strung out in a chain linked by single
edges.. Here the G-density is close to 0. Between
these two extremes there lies a spectrum of degrees
of convergence characterized by the topology of
typical transient trees in terms of their \bushiness".
High convergence implies short and dense trees with
vertices having a high in-degree, signifying order. Low
convergence implies long sparse trees, with vertices
having a low in-degree, signifying chaos. Figures 14
and 15 give examples.

G-density

A simple measure that captures the degree of con-
vergence is the density of garden-of-Eden states
(G-density) counted in attractor basins or sub-trees,
the rate of increase of G-density with n is a further
indication[14]. Because the average in-degree (de�ned

5The term \topology" is used here to denote how vertices are

linked by edges in attractor basins, and should not be confused

with its standard meaning in mathematics.
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below), including in-degrees of zero, must equal one
for any basin of attraction, high G-density (and
a high rate of increase) signi�es high convergence,
low G-density (and a low rate of increase) signi�es
low convergence. High and low convergence in turn
indicate ordered and chaotic dynamics.

In-Degree Frequency

Amore comprehensive measure of the convergence typ-
ical of a rule, is the in-degree frequency distribution
plotted as a histogram. This can be taken on attrac-
tor basins, or on a subtree6 (or fragment thereof) for
larger systems. Subtrees are portrayed as graphs show-
ing trajectories merging onto the subtree root state,
the direction of time is inwards towards the root.

Figure 14: Top left: A transient of the complex k5 rule 6c

1e 53 a8, n=50, also shown in 3(b). Top right: A fragment of

the subtree rooted on the �nal state in the space-time pattern.

The subtree was stopped after 21 levels. Bottom: The in-degree

histogram of the subtree fragment. 66896 nodes, 53906 garden-

of-Eden nodes (with in-degree=0, o� the scale), G-density=0.8,

maximum in-degree=243 (o� the scale).

The in-degree of a state (a vertex in the subtree por-
trait) is the number of its immediate predecessors (also
called pre-images), thus the number of incoming di-
rected edges to the vertex. Examples of in-degree his-
tograms for particular subtrees for a complex and a
chaotic rule are shown in �gures 14 and 15. The hori-
zontal axis represents in-degree size, from zero (garden-
of-Eden states) upwards, the vertical axis represents

6For more about attractor basins and subtrees, and how they

are portrayed and computed see [13, 16]

the frequency of the di�erent in-degrees. For ordered
rules of the size illustrated, in-degrees become astro-
nomical so in this case the plots can only be made for
small systems. From the preliminary data gathered so
far the pro�le of the in-degree histogram for di�erent
classes of rule is as follows:

Ordered rules: A bi-modal distribution, very high
garden-of-Eden frequency and signi�cant frequency of
high in-degrees.

Complex rules: A power law distribution.

Chaotic rules: A relatively lower garden-of-Eden
frequency compared to complex rules, and a higher
frequency of low in degrees.

Figure 15: Top left: The chaotic k5 rule 99 4a 6a 65. Space-

time patterns shown in �gure 3(c), n=50. Top: A fragment of

the subtree generated by running forward from a random ini-

tial state, then backwards from the state reached. The subtree

was stopped after about 1000 levels. Bottom: The in-degree

histogram of the subtree fragment. 11630 nodes, 5818 garden-

of-Eden nodes (with in-degree=0), G-density=0.5, maximum in-

degree=56.

The in-degree frequency is a �ner measure of at-
tractor basin topology and convergence than G-density
alone, and the in-degree histogram gives characteristi-
cally di�erent pro�les for order, complexity and chaos.

Issues for further investigation are: a systematic look
at the pro�les relative to rules at various positions
on the mean entropy/standard deviation scatter plots,
how pro�les change with system size, if a subtree frag-
ment is representative of the dynamics as a whole, if
the pro�le changes for subtrees deep in a basin of at-
traction as opposed to those close to the outer leaves,
and to look at the part of subtrees close to (within a
given diameter in reverse time-steps) from particular
trajectories, especially in relation to glider dynamics.
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7 Glider interactions and basins

of attraction

It is possible to identify classes of con�gurations
that make up di�erent components of attractor
basins in glider rules. In random states, con�gu-
rations occur with equal probability, so the special
glider-background con�gurations are unlikely. Non-
glider/background states make up the majority of
state-space, and are likely to be garden-of-Eden
states, or states just a few steps forward in time
from garden-of-Eden states. They occur in the initial
sorting out phase of the dynamics and appear as short
bushy dead-end side branches along the length of long
transients, as well as at their tips.

States dominated by glider and background con�gu-
rations are special cases, a small sub-category of state-
space. They constitute the glider interaction phase,
making up the main lines of ow within the long tran-
sients. This has also been noted by Domain [4], who
described the main lines of ow as the topological skele-
ton of physically relevant states and the short dead end
side branches from garden-of-Eden states as a skin of
non-physical transitional states, comprising the bulk of
the nodes in an attractor basin.

Gliders in the interaction phase can be regarded as
competing sub-attractors, with the �nal survivors per-
sisting in the attractor cycle. Finally, states made
up solely of non-interacting gliders con�gurations (i.e.
having equal velocity), or backgrounds free of gliders,
must cycle and therefore constitute the relatively short
attractors, with a period depending on the glider ve-
locity. The attractor states are made up of gliders,
compound gliders or just backgrounds, and thus form
a tiny sub-category of state-space. By simply look-
ing at the space-time patterns of a glider rule from a
number of di�erent initial states, most gliders in its

glider repertoire (relative to the system size) may be
identi�ed. A complete list would allow a complete de-
scription of all the attractors in state-space, by �nding
all possible permutation of non-interacting gliders.

8 Conclusion

Glider dynamics in 1d CA is especially interesting as
an example of emergent structure in a fully de�ned
simple system. An unlimited source of complex rules
that support gliders is available by an automatic pro-
cedure based on local measures, in particular input-
entropy variance, which also classi�es rule-space for a
spectrum of ordered, complex and chaotic dynamics.
Global measures, G-density and in-degree frequency,

taken on the topology of attractor basins and subtrees,
relate to the local measures. Though not discussed
here, both local and global measures relate to the rule
parameter Z[13, 14, 16].
Further systematic investigation of both the local

and global measures, based on the automatic rule sam-
ples, and extended samples, is required for a deeper
understanding of CA rule-spaces. The computer tools
for such an investigation are largely in place.

The software

\Discrete Dynamics Lab" (DDLab)[15], was used for
the computations, examples, �gures and data in this
paper. The software is available at:
http://www.santafe.edu/�wuensch/ddlab.html.
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