A model of mass extinction

M. E. J. Newman

Cornell Theory Center, Rhodes Hall, Ithaca, NY 14853.
and
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501.

A number of authors have in recent years proposed that the processes of macroevolution may give rise to self-organized critical phenomena which could have a significant effect on the dynamics of ecosystems. In particular it has been suggested that mass extinction may arise through a purely biotic mechanism as the result of so-called coevolutionary avalanches. In this paper we first explore the empirical evidence which has been put forward in favor of this conclusion. The data center principally around the existence of power-law functional forms in the distribution of the sizes of extinction events and other quantities. We then propose a new mathematical model of mass extinction which does not rely on coevolutionary effects and in which extinction is caused entirely by the action of environmental stresses on species. In combination with a simple model of species adaptation we show that this process can account for all the observed data without the need to invoke coevolution and critical processes. The model also makes some independent predictions, such as the existence of “aftershock” extinctions in the aftermath of large mass extinction events, which should in theory be testable against the fossil record.

1 Introduction

Building on ideas first put forward by Kauffman (1992), there has in recent years been increasing interest in the possibility that evolution may be a self-organized critical phenomenon (Solé and Bascompte 1996, Bak and Paczuski 1996). The basic argument is that the species in an ecosystem are not independent of one another, but interact, and that these interactions, in combination with the spontaneous mutation and genetic variation which is always present in populations, can give rise to large evolutionary disturbances, termed “coevolutionary avalanches”. In this paper we investigate some of the evidence
which has been put forward in favor of these processes, and ask whether these data really demonstrate what it is claimed they do. First, however, we give a brief summary of the fundamental concepts involved—coevolution and self-organized criticality—and review some of the theoretical work which has been done in the area.

Coevolution arises as a result of interactions between different species. The most common such interactions are predation, parasitism, competition for resources, and symbiosis. As a result of interactions such as these, the evolutionary adaptation of one species can force the adaptation of another. Many examples are familiar to us, especially ones involving predatory or parasitic interactions. The evolutionary pressure which the cheetah and the antelope place on one another to run faster is a case in point, or the perpetual evolutionary arms races which take place between a disease and its host. The pressure on the trees of a forest canopy to grow ever taller is an example of coevolution because of competition, in this case for sunlight.

If the evolution of one species can provoke an evolutionary change in another with which it interacts, then presumably it is possible for the change in that second species to provoke one in a third, and so on. Such an evolutionary chain reaction has been dubbed a coevolutionary avalanche, and if such avalanches really existed, they would raise some interesting questions. It has been suggested for example that they could provide an explanation for the observed high rate of species extinction in the fossil record (Bak and Paczuski 1996). It is known that almost all of the species which have lived on the Earth are now extinct (Raup 1986). Only about one in a thousand of those which have ever existed are alive today, and most of the others didn’t last very long—less than ten million years in most cases. Some of these were wiped out by well-documented cataclysmic events. The K–T boundary event is the most famous example, caused perhaps by the impact of a meteor (Alvarez et al. 1980, Sharpton et al. 1992, Glen 1994). However, the majority of extinctions have no known cause. It is possible that some of them were the result not of environmental disasters but simply of natural evolutionary processes. If a coevolutionary avalanche of sufficient size were to pass through the ecosystem, causing the evolution of thousands of species to new forms, it is conceivable that certain species would find their livelihoods destroyed by the changes, and be driven to extinction.

An alternative and subtly different scenario is that of large-scale “pseudoextinction”, the competitive replacement of species by their own descendents. It is the central tenet of the theory of evolution that organisms undergo mutations which in rare cases make them better able to survive and reproduce,
with the result that the descendants of the mutant supplant the ancestral species, which usually becomes extinct. In the fossil record this pseudoextinction process is discernible from true extinction—the death of a species without issue—and traditionally true extinction has provoked more interest, since the processes by which it takes place are largely a mystery. However, if the coevolutionary avalanches described above really do occur, then presumably they give rise to wholesale pseudoextinction, and this could have a significant effect on the rates of species turnover. In theory, one might look for evidence of these sweeping waves of pseudoextinction in the fossil record, though no such quantitative study has been done, and it is not even clear that the available data are equal to the task.

In any case, whatever the particular extinction process we are interested in, we are now led to another question. If coevolutionary avalanches are to produce an effect large enough to be seen in the fossil record, then the avalanches must be very large—of a size comparable with the size of the entire ecosystem. It seems not unreasonable to hypothesize however that the typical avalanche would affect only a handful of species. The intriguing theory which has been proposed in answer to this problem is that of the self-organized critical ecosystem.

Self-organized criticality was first described by Bak, Tang, and Wiesenfeld (1987), who studied the properties of a simple mathematical model of avalanches in a pile of sand. (It is from this work that we take the name “avalanches” for the corresponding phenomenon in our evolving system.) In this model, grains of sand are deposited one by one on a sand-pile, whose sides as a result grow steeper and steeper. Eventually, they are steep enough at some point on the pile that the addition of just one more grain starts an avalanche at that point, and sand falls down the slope. As further grains are added, more and more such avalanches will take place, small at first, but getting bigger as the pile gets steeper. However, there is a limit to this process. At some point—the so-called critical point—the typical size of the avalanches becomes formally infinite, which is to say there is bulk transport of sand down the pile. This in turn reduces the slope of the pile, so that subsequent avalanches will be smaller. Then the process of building up the slope begins once more. As a result the sand pile can never pass the critical point at which the avalanche size diverges; it organizes itself precisely to the point at which the infinite avalanche takes place and the pile collapses, and then stays close to that point ever afterwards.

1 Alternatively there could be very many small avalanches. However, the self-organized critical theories focus on the large avalanche possibility.
It has been suggested that a similar process might be taking place in a co-evolving ecosystem. Through mechanisms not yet well understood (although there has been plenty of speculation) the ecosystem might be driven to produce larger and larger coevolutionary avalanches, until it reaches a critical point at which the typical avalanche size diverges. At this point a “collapse” takes place, analogous to the collapse of the sand in the sand-PILE, preventing any further change and holding the system close to the critical point thereafter. In other words, the system would organize itself precisely to the point at which coevolutionary avalanches of unlimited size take place, and these avalanches then might be responsible for the widespread extinction seen in the fossil record.

We now review briefly a number of theoretical models which have been put forward to explain how self-organization of the ecosystem might take place in practice.

1.1 The NK model of Kauffman and Johnsen

One of the first attempts to model large-scale coevolution quantitatively is that of Kauffman and Johnsen (1991), who created a model based on Wright’s picture of evolution on a rugged fitness landscape (Wright 1967, 1982). In this model a fixed number of species evolve, each on its own fitness landscape. These landscapes are modeled explicitly using techniques akin to those used in the study of spin glasses (Hertz and Fischer 1991). Each species possesses a certain number \(N \) of genes, and different fitnesses are assigned at random to different allelic states, resulting in a fitness landscape in the genotype space. The average ruggedness of this landscape is controlled by a parameter \(K \), which varies the level of epistatic interactions between different genes. In order to produce coevolution, interactions between species are also introduced, each species having the ability to affect the shape of the landscape of \(S \) “neighboring” species, through the interaction of \(C \) of its genes with \(C \) of its neighbors’.

Under the presumed action of selection pressure, each species in the \(NK \) model evolves by the sequential mutation of single genes to states of higher fitness—it undergoes an “adaptive walk”—and the ultimate equilibrium state of the system is a Nash equilibrium in which each species has reached a local fitness maximum and no single mutation will improve its fitness any further. Whether the system does in fact reach such a state turns out to depend on the parameter \(K \) which controls the ruggedness of the landscapes. (In this simplest version of the model, the value of \(K \) is the same for all species, but versions have been studied which relax this constraint.)
For high values of K the landscapes in the NK model are very rugged, meaning that they possess many closely-spaced maxima and minima. In this situation it is relatively easy for most of the species simultaneously to occupy local fitness maxima, at which point they stop evolving. As a result the system usually comes to rest after only a short coevolutionary avalanche, and for this reason the high-K regime is referred to as the frozen regime—the system becomes frozen at a Nash equilibrium and stops moving.

For lower values of K the landscapes on which the individual species move are smoother, which means that on average a species must evolve further from its starting point to get to a fitness peak. However, in so doing it will change many of its genes, and is therefore likely to have an effect on the fitness of other species. As a result, coevolution becomes more common as the value of K gets lower, and coevolutionary avalanches get longer. Eventually there comes a point at which coevolution never stops, and we have an infinite avalanche. At this point we have passed into the chaotic regime.

A divergence of this kind in the avalanche size is of course precisely the type of behavior we are looking for. In the NK model however it only occurs at a certain critical value of the parameter K. Is there any reason to suppose that the ecosystem should be precisely at this critical point? There is in the NK model no explicit self-organizing force which pushes the system towards criticality, as there was in the sand-pile described above, but Kauffman and Johnsen presented numerical results which indicated that the fitness of the species in the ecosystem may be maximized at the critical point, so that ordinary selection pressure would drive them there. In more recent work, Kauffman and Neumann (1994) have described a more complex version of the model in which in addition to coevolution they introduced extinction by competitive replacement, and their numerical experiments with this version seem to indicate that the resulting distribution of the size s of extinction events follows a power law:

$$p(s) \propto s^{-\tau},$$

where the exponent τ is about 1 in this case. A power-law distribution of event sizes is often a good indicator of critical behavior, a point which will come up frequently in this paper.

1.2 The self-organized critical model of Bak and Sneppen

Another model of coevolutionary avalanche behavior which has attracted a good deal of attention in the last few years is the model proposed by Bak
and Sneppen (1993). This model is related to the \(NK \) model of the previous section, but it incorporates one crucial new idea which, as it turns out, is enough to cause the desired self-organization of the model ecosystem to the critical point at which the mean avalanche size diverges.

The new assumption of the Bak-Sneppen model is that the first species to evolve, the one which starts the coevolutionary avalanche going in the first place, is the species with the lowest fitness. In the studies of Kauffman and co-workers, by contrast, the first species to evolve was chosen at random. In addition, Bak and Sneppen made the assumption that only the neighbors of that first species to evolve would be directly affected by its evolution, limiting the immediate avalanche to only a handful of species. However, they then repeated this whole process, starting another avalanche with the species with the next lowest fitness, and so forth. They observed that there was a greater probability of a species having a low fitness if it had recently evolved, which means that those species which took part in previous avalanches were more likely to be chosen. This gives rise to a sort of avalanche of avalanches, a wave of evolution propagating across the ecosystem. Although this is not exactly the phenomenon which we were describing in Section 1, it is possible that it could occur in nature, and that it could be responsible for species extinction. The elegant thing about the Bak-Sneppen model is that it appears to be a true self-organized critical model in that, regardless of the conditions it starts under, the system organizes itself precisely to that state in which the mean avalanche size is infinite, and the distribution of avalanche sizes follows a power law, Equation (1), again with an exponent \(\tau \) close to 1.

1.3 Another self-organized critical model

Another possible mechanism for self-organized criticality in a coevolving system has been suggested recently by Newman (1997) and incorporated into a model which makes very direct use of the coevolutionary avalanche idea, although it does not employ the fitness landscape paradigm used by both of the previous two models discussed. In this model, the action of selection pressure is assumed to favor a slow increase in the number of interactions between species, with the result that the typical size of coevolutionary avalanches (which depend on these interactions) grows over time. However, at the same time it is assumed that these coevolutionary avalanches cause the extinction of a fraction of the species which they affect, though mechanisms such as those described earlier. When a species becomes extinct in this way, all its interactions with other species vanish, and this reduces the average size of coevolutionary avalanches once again. The net result is that the ecosystem
drives itself just to the "percolation threshold" at which the infinite avalanche takes place, and then stays poised there. This model also appears to be a true self-organized critical model, capable of generating avalanches the size of the entire ecosystem. The measured distribution of avalanche sizes follows a power-law with an exponent of $\tau = \frac{3}{2}$.

1.4 The connection model of Solé

Another model which focuses on the interactions between species has been proposed by Solé et al. (1996). This model relies on a specific assumption about the mechanism by which species become extinct: it is assumed that species interactions can be both beneficial and harmful to a species, and that if the harmful effects on a particular species of the others around it outstrip the beneficial effects, the species will become extinct. The death of a species could be caused by, for example, its inability to win sufficient resources in the face of overwhelming competition, or its being hunted to extinction by an overzealous predator. In detail the model is as follows.

A fixed number N of species interact with one another in the model ecosystem. Each one interacts with a certain number K of the others, and the interactions may be harmful or beneficial. Each interaction is represented by a number whose magnitude is an indication of the strength of the interaction, and which is either positive or negative depending on whether the interaction is beneficial or harmful. Note that there is no need for the interactions to be symmetric, for the effect of species A on species B to be the same as that of B on A. To take an example, the effect of a predator on its prey is clearly a harmful one, but the effect of the prey on the predator is beneficial.

We want a species to become extinct if the harmful effects of other species outweigh the beneficial ones, and this is achieved by a simple rule. If the sum of all the numbers representing the effects of other species on any one species is less than zero, then that species becomes extinct. In order to keep the total number of species constant, the extinct species is then replaced by speciation from one of the others. In order that the model doesn’t grind to a halt when all possible extinctions have occurred, it is also necessary to change species interactions occasionally, by choosing one at random and giving it a new numerical value.

This model is slightly different from the others we have considered, in that the species interactions do not give rise to coevolution, but only to extinction. However, in simulations of the model, Solé et al. have found that species
tend to become extinct in waves, akin to the coevolutionary avalanches we have been discussing, because the extinction of one species removes its effect on any others with which it interacted, which will be beneficial to some (if its previous presence was harmful) but harmful to others. As a result, some previously stable species will become extinct following the extinction of one or more of their neighbors, and an avalanche ensues. Solé and co-workers found that the mean size of these avalanches diverges as the model comes to equilibrium, and the size distribution follows a power law, with exponent $\tau \approx 2$. This again may be evidence for critical behavior in the model, and an indication that similar mechanisms might give rise to critical behavior in a real ecosystem.

Recently, Manrubia and Paczuski (1996) have proposed another model of species interaction and extinction, which is, in essence, a simplified version of the model of Solé et al. In their version the detailed effect of the extinction of a species on all the neighboring species with which it interacts is replaced by a random “shock” which makes all species in the system more or less susceptible to extinction. This version of the model has the advantage of being analytically tractable. It also gives a power-law extinction size distribution, along with a number of other interesting results.

It may appear that we have introduced a rather bewildering array of different models here. However, the important point is that, by the very nature of critical phenomena, the predictions of all of these models are somewhat similar. All of them, for example, predict that the distribution of the sizes of avalanches should follow a power law, Equation (1), although they predict different values for the exponent τ. Some of them also predict power-law distributions of other quantities, such as the lifetimes of species. So, without even knowing which if any of the many models is a good representation of processes taking place in the real ecosystem, it is possible to examine fossil and other data for these tell-tale signs of critical behavior. In this paper we outline some of the evidence which has been put forward in favor of self-organized critical behavior in terrestrial evolution, showing that a number of the relevant quantities do indeed possess power-law distributions. However, we believe that it is not justified to conclude from this evidence that evolution is a critical process. To demonstrate this, we propose a new and very simple model of evolution and extinction in which species die out as a result of environmental stresses and not because of coevolution or any other endogenous effects. Our model does not in fact incorporate any elements which mimic the effects of coevolution in the ecosystem, but nonetheless it reproduces accurately all the evidence which has been claimed to be the result of self-organized critical behavior. As a result, we conclude, there is no reason to invoke self-organized criticality as
an explanation for the observed data.

2 Evidence in favor of self-organized criticality

The one result on which all of the models described above concur is that the distribution of the sizes of avalanches should follow a power law of the form given in Equation (1). Unfortunately, it has not proved possible to observe coevolutionary avalanches directly in any but a small number of cases, so we do not have any statistical data on what the distribution of their sizes might be in nature. What we can study is the distribution of the sizes of extinction events, for which we have moderately good fossil data. Some of the models described in the last section, such as those of Kauffman and Neumann, Solé et al., and Manrubia and Paczuski, clearly predict that the extinction distribution should also follow a power law, and this is a prediction which we can test. Others do not make an explicit connection to extinction, but nonetheless indicate that a power-law extinction distribution might be expected, without making a precise prediction about its exponent. It therefore makes sense to ask whether the distribution of the sizes of extinction events in the fossil record does indeed follow a power law.

Data on the extinction of paleozoic and mesozoic marine invertebrates compiled by Sepkoski (1993) and analysed by Raup (1986), has been used by Solé and Bascompte (1996) to show that the fossil extinction distribution is compatible with a power law, and that the exponent τ is equal to about 1.95. Their fit to the data is reproduced in Figure 1. They also point out however, that, given the rather poor statistical quality of the data, the distribution is also fitted acceptably by an exponential distribution, which is definitely incompatible with self-organized critical theories. Raup (1991) has used the same data to construct a so-called “kill curve”, which is a cumulative frequency distribution of extinctions, and Newman (1996) has shown that the extinction size distribution can be deduced from this kill curve by a simple mathematical transformation. It turns out that Raup’s curve is approximately equivalent to a power-law distribution of extinction events with an exponent of $\tau = 1.9 \pm 0.4$—see Figure 2. In the same paper, the author also made use of a Monte Carlo technique to fit a power-law form to the fossil data and extracted a figure $\tau = 2.0 \pm 0.2$ for the best fit. Thus it is probably fair to say that the distribution of extinction events in the fossil record is compatible with a power-law form, although the data are not good enough to rule out other possible functional forms.
Fig. 1. Frequency distribution of extinction rates over 79 geologic stages during the phanerozoic, with the best fitting power-law (solid line) and exponential (dashed line) curves. After Solé and Bascompte (1996).

The figure $\tau \approx 2$ is interesting because it makes quantitative comparison possible between models of extinction and empirical data. As it turns out, most of the models discussed above are compatible with this figure. The models proposed by Bak and Sneppen (1993) and by Newman (1997) are purely models of evolution and make no numerical prediction about the distribution of extinction events. The models of Solé et al. (1996) and of Manrubia and Paczuski (1996) both predict values of τ close to two in good agreement with the fossil data. The only model discussed here which is ruled out by the data is that of Kauffman and Neumann (1994), which predicts that τ should take a value close to one.

Another form of evidence comes from the distribution of the lifetimes of taxa in the fossil record. A number of the models described in the last section make the prediction that the lifetimes of species should also have a power-law distribution, and this too can be tested by examining fossil data. In order to measure the lifetime of a taxon accurately, one needs a reasonably generous sample of fossil representatives. (Poorly represented taxa are susceptible to the Signor-Lipps effect (Signor and Lipps 1982) which tends to result in underestimated
Fig. 2. The extinction distribution corresponding to the kill curve extracted from Sepkoski’s fossil data by Raup (1991). The curve is approximately power-law in form with an exponent of $\tau = 1.9 \pm 0.4$.

As a result, it is common to work with higher taxa, usually genera or families, when making lifetime estimates, rather than species. Again using Sepkoski’s data, Sneppen et al. (1995) have examined the distribution of genus lifetimes over the entire phanerozoic, and have concluded that the distribution is approximately power-law in form, with an exponent α measured to be in the vicinity of two. The data are reproduced in Figure 3.

Another example of a system in which species have a power-law distribution of lifetimes has been observed recently by Adami (1995), not with biological data, but with data on the evolution of competing computer programs in the Tierra artificial life environment created by Ray (1994). In these simulations, self-reproducing programs compete for limited resources in the form of CPU time and memory space on a computer, and those which reproduce most successfully rapidly dominate the system. In the course of a number of very large Tierra simulations, Adami observed the lifetimes of the dominant species in the system and demonstrated that a histogram of these lifetimes approximately follows a power law with an exponent α near one—see Figure 4. Although these data come from a very different kind of ecosystem to
Fig. 3. The distribution of genus lifetimes drawn from Sepkoski’s data. The distribution is approximately power-law in form with an exponent of $\alpha = 1.9 \pm 0.1$ (solid line). After Sneppen et al. (1995).

the biological ones which are our principal concern here, many of the same considerations apply to the two cases and it is possible that results from one can shed light on the other. We should point out however, that, intriguing though Adami’s power-law forms are, it is not clear whether they are the result of self-organized critical behavior (Newman et al. 1997).

A third type of evidence for critical behavior, independent of the fossil data on which the previous two rested, comes from taxonomic analyses. Using data from living biota, Willis (1922) noted that the distribution of the number genera with a certain number of species follows a power law with an exponent whose value is variable, but typically around $\frac{3}{2}$ (Figure 5). In combination with the empirical law of age and area proposed by Willis, which in one of its forms states that the number of species in a genus increases linearly with the age of the genus, this result again implies a power-law distribution in the lifetimes of genera. Note however that this result should be considered independent of the direct measurement of the genus lifetime distribution shown in Figure 3, since it is derived from entirely different data. Burlando (1990, 1993) has demonstrated that the power-law distribution of species within genera extends also
Fig. 4. The integrated distribution of species lifetimes in simulations performed using the Tierra artificial life system. The distribution is approximately power-law in form with an exponent α near one. The fall-off in the curve for long lifetimes is caused by finite-time effects in the simulations. After Adami (1995).

to higher taxa, indicating a fractal self-similarity in the taxonomic hierarchy which may possibly also be the result of critical behavior in evolution.

Recently Solé et al. (1997) have also studied the power spectrum of the time series data for phanerozoic extinction events. They conclude that the spectrum approximately follows a $1/f$ law, and tentatively propose that this may indicate critical behavior. As they point out, $1/f$ noise is a widespread phenomenon, occurring in many systems which are not critical, but nonetheless their results add one more data point to the argument.

In addition to these quantitative kinds of evidence, a number of authors have pointed to general trends in the evolutionary record which may be indicators of critical behavior. Chief amongst these are the punctuated equilibria highlighted in the work of Gould and Eldredge (1993), which consist of bursts of evolutionary activity separated by periods of comparatively little change. Self-organized critical models typically show intermittent patterns of activity which are somewhat similar, and it has been suggested (see, for example, Bak
Fig. 5. Histogram of the number of species per genus for flowering plants. The distribution is approximately power-law in form with a measured exponent of 1.5 ± 0.1. After Willis (1922).

and Sneppen (1993)) that the two phenomena are in fact one and the same. It should be pointed out that traditional evolutionary theory is not especially in need of an explanation of punctuated equilibria: the standard picture of evolution on a rugged fitness landscape implies that species will spend long periods of time close to particular fitness peaks before making a rapid movement to a new peak. Whether this movement is provoked by coevolutionary pressures or not makes little difference, the punctuation will be present either way. However, it is certainly possible that some of the punctuations visible in the paleontological record are the result of intermittent coevolutionary avalanches, and hence a sign of critical behavior.

One might think then, given these different types of evidence, that there was moderately good cause to believe that biological evolution does indeed drive the ecosystem to a critical point, resulting in power-law distributions of various quantities. However, as we mentioned above, we do not believe this to be a justified conclusion. In support of this view, we now introduce and study in some detail a simple model of evolution and extinction which reproduces all of the evidence above although it is not a self-organized critical model.
and does not contain any element which mimics the proposed coevolutionary avalanche behavior. A brief account of this model has appeared previously (Newman 1996).

3 A model for evolution and extinction

The model we propose is a simple one. Its assumptions are few in number and straightforward. To begin with, we assume that the ultimate cause of extinction for any species is environmental stress of one kind or another, a very conventional point of view (see, for example, Hoffmann and Parsons (1991)). Stresses of a variety of different kinds have been associated with most of the major extinction events in the Earth’s history (Jablonski 1986). They include climate change, changes in sea level, bolide impact and a variety of other factors. There is no reason why coevolutionary avalanches should not also be a contributing factor to extinction. It is certainly possible, as discussed above, that a large coevolutionary avalanche could place a strain on the ecosystem and cause the extinction of a number of species. This possibility is not excluded from our model, although neither is it given any special treatment. As far as the model is concerned, stresses are stresses. In fact, the only feature distinguishing one stress from another within our model is their strength, which if the model is to have any realism at all, must presumably vary with time. Sometimes the climate will be particularly harsh and at other times it will be clement. Sometimes there will be large rocks raining down from space while at others only small ones, or none at all. In the simplest version of our model, all of these effects are represented by just one quantity, $\eta(t)$, which measures the level of stress at time t.

We introduce a number N of species into the model, all of which feel the same stresses, represented by $\eta(t)$. Any species will become extinct if hit by a sufficiently large stress. However, we assume that the threshold level of stress required to drive a species extinct varies from one species to another. For the i^{th} species we denote this threshold by x_i. If at any time the stress level $\eta(t)$ exceeds the extinction threshold for a particular species, then that species becomes extinct. Since it is observed that the number of species a habitat can support is roughly a constant over time (Benton 1995), we replace these extinct species with equal numbers of new ones, which are assumed to have speciated from survivors. Thus the number of species remains constant at N.

This is essentially all there is to our model—extinction as a result of stresses placed on the system, and replacement by speciation. However, there are a
number of blanks which still need to be filled in. First, how is the value of \(\eta(t) \) at any particular time chosen, and what values do the threshold variables \(x_i \) take? We divide time in the usual fashion into discrete time-steps, and, since we have no reason to do otherwise, choose the stress level \(\eta \) to be a new random number at each step. Assuming that small stresses are more common than large ones, we draw these random numbers from a distribution \(p_{\text{stress}}(\eta) \) which falls off away from zero, though it is not necessary that the distribution be strictly monotonic. The exact form of \(p_{\text{stress}}(\eta) \) does not, as we will see, matter as far as the principal predictions of the model are concerned, however some plausible forms for the function might be a Poissonian distribution, or Gaussian white noise.

The threshold variables \(x_i \) are chosen initially at random. When new species appear in the aftermath of an extinction event they need to be assigned values of \(x_i \), and there are a couple of reasonable ways in which we might do it. One way would be to have them inherit values from other surviving species, from which they are assumed to have speciated. Another way might be simply to assign new values drawn at random from some distribution \(p_{\text{thresh}}(x) \). For example, values might be chosen to lie uniformly in the interval between zero and one. We have experimented with threshold values chosen according to both of these methods. To a large extent we again find that the predictions of the model do not depend on the choice we make.

There is one further element which we need to add to our model in order to make it work. As we have described it, the species in the system start off with randomly chosen thresholds \(x_i \) and, through the extinction mechanism described above, those with the lowest thresholds are systematically removed from the population and replaced by new ones. As a result, the number of species with low thresholds for extinction decreases over time and so the size of the extinction events taking place dwindles. Ultimately, extinctions will cease altogether, a behavior which we know not to be representative of a real ecosystem. The solution to this problem comes, we believe, from evolution. In a real ecosystem, extinction as a result of applied stress certainly can increase the mean fitness with respect to stress, as we see here in our model, but we can also assume that in the intervals between large stress events species will evolve under other selection pressures, possibly at the expense of their ability to withstand stress. In other words, the necessary business of adapting to the environment can, as a side effect, change a species’ ability to survive the next large stress placed on it by its environment, and that change, although it could be for the better, could also be for the worse. There are a couple of possible ways to represent this situation in the model. One, which we can think of as the gradualist viewpoint, is to have the values of all the variables \(x_i \) wander
slowly over time, by adding or subtracting a small random amount to each one at each time-step. Another possibility, the punctuationalist viewpoint, would hold most species constant at any given time-step, but allow a small fraction f to evolve to new forms with completely different values of x_i. We experiment with both these possibilities in the next section, and again demonstrate that, to a large extent, the model’s predictions are independent of the choice we make.

This then completes our model. In one of its simplest variations, the model could be summarized as follows. We take N species, labeled by $i = 1 \ldots N$ and initially assign to each a threshold for stress x_i chosen at random from a distribution $p_{\text{thresh}}(x_i)$.

(i) At each time step we choose a number η at random from a distribution $p_{\text{stress}}(\eta)$ to represent the stress level at that time, and all species possessing thresholds for extinction x_i below that level become extinct. The fraction s of the total N species which become extinct in this way is the size of the extinction event occurring in this time-step. The extinct species are replaced with new ones whose thresholds for extinction x_i are chosen at random from the distribution $p_{\text{thresh}}(x_i)$ again.

(ii) A small fraction f of the species, also chosen at random, evolve to new forms and are assigned new values of x_i chosen at random from the distribution $p_{\text{thresh}}(x_i)$.

This version of the model is in fact identical to the model used by Newman and Sneppen (1996, Sneppen and Newman 1997) to study the dynamics of earthquakes. In these papers we investigated the properties of the model analytically in some detail. Rather than reproduce that discussion, the reader is referred for details to those papers. Here we investigate instead the model’s properties as they apply to the issue of biological extinction.

4 Properties and predictions of the model

The first and most important feature of the model which we should point out is that it is not a self-organized critical model. The model does not show coevolutionary avalanches of the kind which it is argued are responsible for self-organizing behavior, and indeed the species in the model do not interact with one another at all. Each species develops entirely independently of all the others and its ultimate fate will the same regardless of what any of the others do. This is, of course, an oversimplification of the true situation. There
Fig. 6. The distribution of the sizes of extinction events during a simulation of the model described in Section 3. The distribution follows a power law closely over many decades, before flattening out around $s = 10^{-8}$. In this example, in which the stresses on the system were drawn from a normal distribution, the power law has an exponent of 2.02 ± 0.02.

is no doubt that real species do interact and do coevolve. In Section 5 we will examine a more sophisticated variation of our model which reintroduces species interaction. However, the simple version presented here serves a very useful purpose, since as we will see, even without interaction between the species it reproduces all the forms of evidence for self-organized criticality put forward in Section 2, indicating that the mechanisms present here—stress-driven extinction, repopulation, and random uncorrelated evolution—are on their own perfectly adequate to explain the data.

4.1 Distribution of extinction sizes

The fundamental prediction of our model is that a certain number of species may be expected to become extinct at each time-step, and that the fraction s which does so depends on the level of stress placed on the system during that
step, and on the number of species present in the population whose ability to withstand that stress is low. In Figure 6 we show a histogram of the sizes of the extinction events taking place over the course of a computer simulation of the model lasting ten million time-steps. The histogram is plotted on logarithmic scales, and the straight line form of the graph indicates that the histogram follows a power law of the form given in Equation (1). The only deviation is for very small extinction sizes, in this case below about one species in 10^8, for which the distribution becomes flat. However, extinctions this small are well below the noise level in our fossil data, so to the resolution of the data the prediction of our model is that the distribution of extinction sizes should be power-law in form. The distribution of applied stresses for the simulation shown in Figure 6 was normal with standard deviation $\sigma = 0.1$ and mean zero:

$$p_{\text{stress}}(\eta) \propto \exp \left[-\frac{\eta^2}{2\sigma^2}\right].$$

The exponent τ of the power-law distribution in Figure 6 can be measured with some accuracy and is found to be 2.02 ± 0.02. Recall from Section 2 that the distribution of the sizes of extinction events in the fossil record has been found to be compatible with a power law form, and that this has been taken by some as an indication of self-organized critical behavior. Here, however, we see the same result emerging from a non-critical model of the extinction process, and furthermore, the measured value of τ is in excellent agreement with the value of 2.0 ± 0.2 extracted from the fossil data.

In Figure 7, we show the distribution of extinction sizes for a wide variety of other stress distributions $p_{\text{stress}}(\eta)$. As the figure makes clear, the power-law distribution of extinction sizes is a ubiquitous phenomenon, and does not rely on the presence of any particular stress distribution. Furthermore, although the exponent of the power law function varies somewhat as the stress distribution is changed, it is always quite close to two, in agreement with the value observed in the fossil data. In a previous paper (Sneppen and Newman 1997) we have given an analytical explanation of this property of the model, as well as simulation results for the distribution of extinction sizes in the model for a variety of different choices of the fraction f of species which evolve at each time step. As we show, the power-law form of the extinction distribution is present in all cases, with exponent in the vicinity of two, except when f becomes very large (comparable to one).

In Figures 8 and 9 we show distributions of extinction sizes drawn from simulations of the model in which newly appearing species inherit values of x_i from the survivors of the last extinction event, or in which evolution takes place
Fig. 7. The distribution of the sizes of extinction events in the model for a variety of different types of applied stress distributions. The distributions used include normal centered around zero, normal centered away from zero, Poissonian, exponential, stretched exponential, and Lorentzian.

by the gradualist process described in Section 3 where the thresholds of all species perform a slow random walk as time progresses. As the figures show, the power-law form of the extinction distribution is robust against all of these variations in the dynamics of the model.

4.2 Species lifetimes

It is also a straightforward matter to measure the lifetimes of species in our model. Counting the number of time-steps between the first introduction of a species and its eventual extinction, we have constructed a histogram, Figure 10, of species lifetimes. Again the axes are logarithmic, and the straight-line form indicates that the distribution follows a power law. The exponent α of this power law is measured to be 1.03 ± 0.05, which is, for example, close to the distribution of lifetimes measured by Adami (1995) in his work on artificial life. As discussed in Section 2, measurement of species lifetimes in the
Fig. 8. The distribution of the sizes of extinction events for the variation of the model in which newly appearing species inherit their threshold values from survivors of the last extinction event.

fossil data is prone to error and studies have tended to concentrate more on the higher taxa. In the next section we consider how information on genera, including the distribution of genus lifetimes, can be extracted from our model.

4.3 Genera

The model as we have described it contains no information about taxonomic structure. However it is not difficult to extend it so that it does. We start off by assigning every species to its own unique genus, and thereafter when a new species appears it is assumed to have speciated from one of the previously existing ones, and therefore it should share the same genus as that parent species. As before, we make the simplest assumption and choose the parent species at random from the available possibilities. This on its own results in an ever dwindling number of genera, since genera can become extinct if all their member species vanish, but new ones can never appear. In reality this doesn’t happen because every once in a while a species appears which is declared to
Fig. 9. The distribution of the sizes of extinction events for the variation of the model in which evolution takes place in a gradual fashion, the values of x for each species performing a slow random walk, rather than changing abruptly as in most of our other simulations.

be the founding member of a new genus. This process can be emulated in the model by choosing a small fraction g of new species at random to found genera. (Choosing them at random may seem rather an extreme route to take, but on the other hand it may not be so very different from the behavior of a real taxonomist.) The result is a model in which genera appear, flourish, and become extinct, just as species do.

In Figure 11 we show the distribution of the lifetimes of genera drawn from a simulation of the model, plotted again on logarithmic scales. As with the lifetimes of species the distribution follows a power law. The exponent in this case is measured to be 1.0 ± 0.1.

In Figure 12 we show a histogram of the numbers of species in each genus in the same simulation. This too follows a power law, with an exponent measured in this case to be 1.6 ± 0.1. This result is in agreement with the studies of modern taxonomic trees performed by Willis (1922) and more recently by Burlando (1990, 1993) (see Section 2), which showed that this distribution
Fig. 10. The distribution of species lifetimes measured in simulations of the model. The distribution is power-law in form, with an exponent of 1.03 ± 0.05.

does indeed follow a power law, with a measured exponent in the vicinity of \(\frac{3}{5} \).

We see that our simple model of evolution and extinction agrees both qualitatively and quantitatively with the various forms of evidence put forward in Section 2 even though it is not a self-organized critical model. However, the model also makes some independent predictions about extinction which may help to determine whether the processes which it models actually do take place in the real world. One of the most striking of these predictions concerns the existence of “aftershock extinctions”.

4.4 Aftershock extinctions

In the model we have proposed, stresses on the system render extinct those species which are not strong enough to survive them, in effect selecting for those which are. However, even species which are well able to withstand stress may lose that ability, because in the periods when the selection pressure of the
Fig. 11. The distribution of genus lifetimes measured in simulations of the model. The distribution is power-law in form, with an exponent of 1.0 ± 0.1.

stress is absent they may evolve in other ways, and this can make them more susceptible to stress. The result is that the longer the time between one large stress on the system and the next, the more species will have taken advantage of the lull to exert themselves adaptively in other directions, reducing their tolerance for stress and making them more likely to become extinct next time around. As a result, long periods in which the stress level is low tend to be followed by large extinction events. Unfortunately, this is not an effect which is likely to be easily observed, since it is very hard to know what level of stress species were feeling given only their fossils and the accompanying geological record. However, there is another related effect which may be visible.

When a large extinction event does take place, it opens the way for a large number of new species to appear, a phenomenon which can be seen clearly in the fossil record. However, it is possible that some of the species which appear to fill newly-vacated niches may not be very well adapted to the lives which they are trying to lead, having not had very long, in evolutionary terms, to adapt to them. In particular, these opportunistic species have not yet been subject in their short lives to any dramatic environmental stresses, and although some of them may, fortuitously, be well-adapted to survive such stresses, oth-
Fig. 12. Histogram of the number of species per genus in a simulation of our model. The distribution has an exponent of 1.6 ± 0.1.

...ers may not be, with the result that they will get wiped out when the next stress of even moderate size appears on the horizon. Thus we expect that in the aftermath of a large extinction event there will appear opportunists which last only a brief time before disappearing themselves in another, smaller extinction event. This is what we call an aftershock extinction, and the effect is clearly visible in our model. In Figure 13 we show an example of a series of aftershocks drawn from one of our simulations. In this particular example it is also clear that the aftershocks themselves give rise to after-aftershocks, and so forth in a decaying series. It is possible that aftershock extinctions might also be visible in the fossil record. To our knowledge no one has looked for such an effect, but it might make an interesting study.

The time spacing of the aftershocks is of interest too. We have measured the time in between large extinction events and each of the smaller aftershocks which come after them. Figure 14 is a histogram of these times, and again it follows a power law. The exponent in this case is -1, which is to say that the probability per unit time of the occurrence of an aftershock extinction following a large extinction event goes down as t^{-1} with time after the initial large event. In a previous paper (Newman and Sneppen 1996) we have given...
Fig. 13. A section of the time-series of extinction events in a simulation of the model. The aftershocks following the first large event are clearly visible. Notice also that some of the aftershocks themselves generate a smaller series of after-aftershocks.

an argument explaining why we believe this power-law to be exact, with exponent -1 regardless of the distribution of stress levels, or any of the other parameters of the model. It would be very interesting if it were possible to observe this behavior in the fossil record too, although it seems unlikely that the resolution of the currently available data is up to this task (Raup, private communication).

5 Variations on the model

The model we have studied in the previous sections of this paper was about as simple as we could make it, and deliberately so, since our primary aim has been to show that the data which others have used in favor of self-organized critical theories of evolution can be explained by much simpler assumptions. However, there are crucial features of the real ecosystem which are missing from our model, and it is important to find out whether these have any effect on the behavior predicted by our model. Of course, the real ecosystem is
Fig. 14. A histogram of the time distribution of aftershocks following a large event. The distribution follows a power law with an exponent very close to one.

arbitrarily complicated and there is no way we can ever remotely approach its complexity with a model such as the one described here; it is the hope of modeling work such as ours that the gross features of the extinction process are dominated by a few basic mechanisms and that the other details of the way in which individual species evolve make only a small contribution to the overall picture. Nonetheless, there are undoubtedly some very important factors which are missing from the model as it stands, and it would be good to demonstrate that these do indeed not affect our fundamental predictions. In this section we examine briefly two such factors, both of which lead to generalized versions of the model. The first is species interactions.

In Section 1 we discussed the importance of interspecies interactions in producing coevolution. The self-organized critical theories of ecosystem organization rest upon the contention that these interactions are the dominant force shaping the biosphere. Is it not possible then that the presence of such interactions could make the behavior of real ecosystems entirely different from that of our model? In order to address this question we have introduced interspecies interactions into the model in a way akin to that suggested by Bak and Sneppen (1993). The model is now placed on a lattice. It could be a single line, or
Fig. 15. The distribution of the sizes of extinction events for a variation of the model in which the species are placed on a lattice and the extinction of one species as a result of the applied stress gives rise to the extinction of all the neighboring species of that one. As the figure shows, the distribution of event sizes still follows a power law.

a square grid, or a random lattice. It turns out to make little difference. The dynamics of the model is as before except that now, as well as wiping out all those species with thresholds \(x_i \) for extinction which are less than the stress level \(\eta \), we also wipe out their neighbors on the lattice. The rationale behind this move is that when a species becomes extinct there exists the possibility that it will take with it some of the others which depend on it; the extinction of a particular plant species for example might result in the extinction of the insect which lays its eggs on the leaves. (The much less dramatic reality of course is that the extinction of one species usually just forces minor adaptations in others. However, we are exaggerating the effect here in order to investigate its influence on our model.)

In Figure 15 we show the distribution of extinction sizes calculated in a simulation of this variation of the model. As the figure makes clear, our basic prediction of a power-law distribution of extinction sizes is unchanged. The exponent is still in the vicinity of two for any choice of stress distribution
$p_{\text{stress}}(\eta)$, in agreement with the fossil data. The addition of species interactions does of course have some effect on the model. In particular there is now a correlation between the species which become extinct: if a species has, say, four neighbors with which it interacts, and all of them become extinct when it does, then there will be a group of five species which all became extinct at once. It is possible that such groups, arising through this ‘knock-on’ extinction effect, might be observed empirically. (Deforestation, which might be viewed as a form of extinction, is well known to have substantial knock-on effects, for example.) However, the large-scale predictions of our model, and their agreement with fossil and other data, are unaltered.

Another obvious problem with our model is that it regards all stresses as being equivalent, whereas in reality this is clearly not the case. In real life the stresses on an ecosystem are of many different types and different species will have different tolerances for each type. A species living in the warm shallow waters at the edge of the ocean may be devastated by a three meter drop in sea level, while another living above the snow-line at three thousand meters may not feel a thing. The meteor which lands in central Africa may spell disaster for those close to the impact, but others living in Siberia may be indifferent. In order to incorporate this concept in our model, we turn our single stress level η into many levels η_1, η_2, etc. each one representing the level of a different type of stress, and each one chosen independently at random at each time step. One such level might represent stress arising from changes in sea level for example, and another changes in climate, and so forth. Each species also has many threshold variables, which we can denote $x_{i,1}$, $x_{i,2}$ and so on, measuring the species’ tolerance for the corresponding type of stress. Now if at any time the level of any one type of stress exceeds a species’ tolerance for it, then the species becomes extinct.

Figure 16 shows an example of the distribution of extinction sizes generated in a simulation of this version of the model with, in this case, ten different types of stress. Again we see that the power-law form of the distribution is preserved, and the exponent is still close to two. In fact it seems not unreasonable that this should be the case. Presumably the type of stress for which the threshold is lowest is the one which is most likely to drive a particular species extinct, and if we make the approximation of simply ignoring all the different types of stress except this one then, mathematically speaking, the model becomes identical to the simple form in which there is only one type of stress. Crude though this approximation is, it gives an indication that the behavior of the two versions should indeed be similar.
Fig. 16. The distribution of the sizes of extinction events for a variation of the model in which there are many different kinds of stress, and a species may become extinct as a result of any one of them. In this particular simulation there were ten different kinds of stress.

6 Conclusions

We have reviewed the arguments and evidence which have been put forward in favor of self-organized critical processes in evolution. They revolve primarily around the demonstration of the existence of power-law distributions in a variety of quantities, including the sizes of extinction events seen in the fossil record, the lifetimes of fossil genera, and the number of species per genus in taxonomic trees. We have then introduced a new and simple model in which extinction is caused by random stresses placed on the ecosystem by its environment. This model is not self-organized critical, and indeed does not in its simplest form contain any interactions between species whatsoever. Nonetheless, as we have demonstrated, it reproduces all of the above evidence well. We therefore suggest that this evidence should not be taken (as it has been by some) to indicate critical behavior in terrestrial evolution.
Acknowledgements

The author would like to thank David Raup, Kim Sneppen, and Ricard Solé for interesting discussions, and Chris Adami and Simon Fraser for supplying the data used to produce Figures 4 and 5. This work was supported in part by the Cornell Theory Center, by the NSF under grant number ASC-9404936, and by the Santa Fe Institute and DARPA under grant number ONR N00014–95–1–0975.

References

