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Cities are perhaps the ultimate expression of human sociality displaying at

once humanity’s greatest achievements and some of its most difficult chal-

lenges. Despite the increasing importance of cities in human societies our

ability to understand them scientifically, and manage them in practice, has

remained unsatisfactorily limited. The greatest difficulties to any scientific ap-

proach to cities have resulted from their many interdependent facets, as social,

economic, infrastructural and spatial complex systems, which exist in similar

but changing forms over a huge range of scales. Here, I show how cities may

evolve following a small set of basic principles that operate locally and can ex-

plain how cities change gradually from the bottom-up. As a result I obtain a

theoretical framework that derives the general open-ended properties of cities

through the optimization of a set of local conditions. This framework is used

to predict, in a unified and quantitative way, the average social, spatial and

infrastructural properties of cities as a set of scaling relations that apply to

all urban systems, many of which have been observed in nations around the

world. Finally, I compare and contrast the structure and dynamics of cities to

those of other complex systems that share some analogous properties.
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Cities have been an endless source of fascination throughout human history [1, 2]. One of

their most extraordinary properties is that cities exist, in recognizable but changing form, over an

enormous range of scales from small towns with a few people to the largest metropolitan areas,

presently headed by Tokyo with over 35 million inhabitants. In the last decades increasing

urbanization, involving most of the world’s nations and billions of people, has brought the

problem of understanding cities to the fore of both policy and research [3]. There has been a

long tradition of seeking insight into the nature of cities through analogies to other physical

and biological systems. Though compelling, such metaphors, drawn from sources as diverse as

river networks [4], biological organisms [5, 6, 7, 8], insect colonies [1, 2, 9] or ecosystems [10],

have remained limited in helping us understand and plan cities successfully.

Recently, analyses of new and more extensive data from many urban systems worldwide

have begun to establish a series of general statistical regularities of cities as systematic nonlinear

variations of urban quantities, Y , with city size, N , measured as population or land area[11, 12,

13, 14, 15, 8, 16, 17], often as scale invariant relations Y (N) = Y0N
β , where Y0 and β are

constants in N . These empirical scaling results suggest that, despite their apparent complexity,

cities may actually be quite simple as their average properties may be set by just a few key

parameters [13, 15]. However, a fundamental derivation of these scaling relations has been

lacking. Here, I develop a general theoretical framework of the interplay between social and

urban infrastructural networks imbedded in space and time. From this perspective, I show

how cities emerge as co-located, scale-invariant social networks made possible by co-evolved

infrastructure networks subject to general efficiency constraints.

The most important properties of cities arise from two effects: i) the concentration of people

in space and time; and ii) more intense use of urban material infrastructure. Together, i) and

ii) promote social contact and coordination, increasing the production rates of social quantities,

such as wealth, innovation, crime, etc [13] (superlinear scaling, β � 1.15) and allow for savings
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in roads, cables, etc per capita as cities grow (sublinear scaling, β � 0.85), see Fig. 1.

To show how these properties are the result of the same essential dynamics consider the

simplest model of a city with land area A and population N . I write the interactions between

people i, j in terms of a social network A
k

ij
and assume that social interactions are local, over an

area a0 and have strength gk (k parameterizes different types of social links). The locality of in-

teractions changes the simplest result that the number of links in a network with N nodes scales

as ∼ N
2 (Metcalfe’s law), leading instead to (see SI for details) Y = G

N
2

A
, with G ≡ ḡa0�,

where ḡ is the average link strength and � is the typical length travelled by people, information,

etc. Each urban output, Y , has physical units set by gk, but it is often useful to think of all

quantities ultimately expressed in terms of energy per unit time (power).

Another crucial property of cities is that they are mixing populations. This concept is famil-

iar from population biology [18] and is the basis of definitions of functional cities as metropoli-

tan areas [19]. Population mixing translates into the cost of realizing interactions proportional

to the transverse dimension of the city L = A
1/2. Thus, the power spent in transport processes

to keep the city mixed is W = �LN = �A
1/2

N , where � is a force per unit time. This cost

must be covered by each individual’s budget, y = Y/N , requiring y � W/N , which implies

A(N) = aN
α with α = 2/3 and a = (G/�)α. Thus, Y = Y0N

β , where β = 2−α = 1 + 1
3 > 1

and Y0 = G
1−α

�
α. This simple model satisfies both principles i) and ii) and leads to area A

that scales sublinearly with N (α = 2/3 < 1), and socioeconomic outputs, Y , scaling super-

linearly (β = 4/3 > 1). However, in practice this gives only an upper bound on β. As cities

grow, transportation of people, goods and information becomes channeled into networks, which

reduce dissipation relative to direct unstructured paths and obey a distinct set of principles.

Although they take many diverse forms, the volume of all urban infrastructure networks

tends to scale sublinearly with population size N [13, 8], but faster than total land area. We

can arrive at these facts and obtain scaling laws consistent with data by requiring that cities
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grow following four principles: 1. Mixing Population: The city develops so that citizens

can explore it fully, given the resources at their disposal. I formalize this principle relative

to the sketch given above by requiring that the minimum resources accessible to each urbanite,

Ymin/N ∼ GN/A, match the cost of reaching anywhere in the city. Thus, this can be seen

also as an entry condition into the city [20]. I characterize the geometry of paths through a

Hausdorff dimension, H , so that distance travelled ∝ A
2

2+H (see SI). Matching density to cost

I obtain a generalized area scaling relation, A(N) = aN
α
, α = 2

2+H
(α = D

D+H
in D di-

mensions). H ∼ 1 is special because it allows each individual to fully explore the city within

the smallest distance travelled (see SI for discussion). 2. Incremental network growth: Infras-

tructure networks develop to connect people as they join (leading to decentralized networks

[8]). The average distance between individuals is d = ρ
−1/2 =

�
A

N

�1/2. This implies the to-

tal network area An(N) ∼ s∗Nd = s∗A
1/2

N
1/2, where s∗ is an invariant D − 1 dimensional

volume characterizing the smallest network transverse dimension. Together with 1. this im-

plies An ∼ s∗a
1/2

N
5/6. (An(N) ∼ s∗A

1/D
N

(D−1)/D = s∗a
1/D

N
D

2+D−1
D(D+1) in D dimensions).

3. Bounded human effort: The coupling G = a0ḡ� is an approximate constant of city size.

This includes (see SI) the interaction area per individual a0, the quality and variety of social

interactions ḡ, and the travel distance � per person. As I show below, microscopic models of

the city determine an optimal G = G
∗, so that certain aspects of this assumption follow from

others. Finally, 4. Socioeconomic outputs are proportional to the number of locally interacting

people, so that Y = GN
2
/An ∼ N

1+1/6, which yields scaling exponents in agreement with a

wide variety of data [11, 12, 13, 14, 17, 21, 22, 23].

These principles do not require an explicit realization of networks, only their average proper-

ties. However, we can gain further insight by building a more microscopic theory of hierarchical

organization of infrastructure networks (c.f. [4, 6, 7]). This requires stronger assumptions but

will also reveal how some of the principles above follow from the general structure of interac-
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tions and dissipation. Consider a hierarchical network with branching b and number of levels

h. b measures the average ratio of infrastructure at successive levels, e.g. paths to small roads,

larger roads to highways. Note that the structure of these networks is not a simple hierarchical

tree [24]. The length of a network segment at level i is li and its transverse dimension si.(an

area in 3D networks and a length in 2D, e.g. roads). Because 2. requires that the total network

length is area filling li = ai/l, with ai = ab
i(α−1). The total network length Ln and area An are

Ln =
h�

i=0

liNi =
a

l

h�

i=0

b
iα =

a

l

b
α(h+1) − 1

bα − 1
� a

l
N

α = A/l, (1)

An =
h�

i=0

siliNi = s∗
a

l
b
−hσ

h�

i=0

b
(α+δ−1)i � s∗a

l

1

1− bα+δ−1
N

1−δ
. (2)

where Ni = b
i, Nh = N and δ = H

D2 α. I assumed α + δ < 1, which holds for D > 1. To obtain

this result I took the transverse dimension of network terminal units, s∗, to be an invariant.

This imposes a boundary condition on si = s∗b
(i−h)σ, where σ = δ − 1 < 0 and thus s0 =

s∗b
−hσ

>> sh = s∗, so that the width of network sections at larger scales is much larger than

for small ones, e.g. the width of highways versus small paths. Contrary to biological vascular

systems, where both the length and radius of the network at the smallest scales was assumed

invariant [7, 6], there is no evidence in cities for the invariance of the former, which depends on

the detailed layout of the city (e.g. longer or shorter blocks, larger or smaller buildings, etc).

These relations also imply that the network average transverse dimension S̄ = An/Ln ∼ N
1/6.

The scaling of transverse dimensions together with the average conservation of flux in the

network siρiviNi = si−1ρi−1vi−1Ni−1 for all i, sets the scaling for ρivi, which is the average cur-

rent cross-sectional density in each network branch. This is interesting because it characterizes

the speed and density of carriers in the network at different levels, which controls dissipation

mechanisms in the city. As a consequence of flux conservation and of the scaling of si, I obtain

that ρivi = b
−δ

ρi−1vi−1, which implies that the current density decreases from the root to the

leaves, so that e.g. highways are faster and more densely packed than smaller roads, as observed
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[25]. Making the further assumption that the current density at the smallest branches is invariant

ρhvh = ρ∗v∗ this leads to ρivi = b
δ(h−i)

ρ∗v∗. Then, because the total current is conserved it is

independent of the level i and takes the value Ii = I = I0N , with I0 = s∗ρ∗v∗. I now derive

the properties of dissipative processes in the network. There are many possible forms of dissi-

pation, including those that occur at large velocity or density. I make the standard assumption

that the resistance per unit length per transverse network area, r, is constant [4, 7], leading to

ri = r
li

si

. For Ni parallel resistors this gives the total resistance per level Ri = ar

ls∗
b
−i(1−α+δ)+hσ

and the total dissipated power, W , is

W =
h�

i=1

Wi = I
2

h�

i=1

Ri = rI
2 a

ls∗
b
hσ

1− b
−(h+1)(1−α+δ)

1− b−(1−α+δ)
� W0N

1+δ
, (3)

which scales superlinearly with N , with 1 + δ � 1 + 1/6 and W0 � r
as∗(ρ∗v∗)2

l(1−b−(1−α+δ))
. Thus,

dissipation scales naturally like social interactions revealing the fundamental nature of cities

as scale-invariant complex adaptive systems. Finally, we cast the problem of defining cities in

terms of standard optimization, maximizing social outputs subject to network dissipation, as

L = Y −W + λ1

�
�A

H/D −GN/A
�

+ λ2

�
An − cρ

−1/D
N

�
→ 2α− 1

α
G

∗ N
2

An(N)
, (4)

where c is a constant, see SI text, and λ1, λ2 are Lagrange multipliers. Eq. 4 gives the basis

for the derivation of the properties of every segment in the network, through Eqs. 1-2. This

results in the scaling of area, network properties and socioeconomic quantities derived above,

see Table 1 for a summary. The novelty in Eq. (4) is the prediction of an optimal G, through

dL/dG = 0, see Fig.2b. Both socieconomic outputs and dissipation grow with G but the

latter grows with a larger power, leading to two solutions to L = 0: G = Gmin = 0 and

G = Gmax =
�

(�α
l)2

r�I2
0

� 1
2α−1 , where r

� � r, see SI. Thus, if the balance of social interactions is

positive, ḡ > 0, human societies are always unstable towards the formation of cities. However,

there is an upper G = Gmax (reached e.g. via increases in human capital or mobility) beyond
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which dissipation overcomes social benefits and the city becomes unstable. In between there

is an optimum G = G
∗ =

�
1−α

α

� 1
2α−1 Gmax≤ Gmax where the city is most productive. The

existence of G
∗ expresses the average balance between social interactions and infrastructure

networks that defines the city at all scales.

The present conceptualization of cities deals primarily with average quantities (mean field

theory). An eventual formalization that includes statistical fluctuations [21, 22, 23] and details

of specific quantities, Y , will contribute to a more complete urban theory and may improve

on the prediction of the value of particular exponents. There are several interesting analogies

between this view of cities and other complex systems. As in biological organisms [6, 7],

infrastructure networks are volume filling; however in cities they scale faster with population

than their embedding volume. Thus, infrastructure in large cities often moves into the third

dimension, above or below ground. In contrast, by concentrating people and their interactions

as sources of the system’s productivity, the city leads to increasing returns to population (β >

1), magnifying per capita wealth creation, innovation and crime and accelerating all forms of

social life [13]. This effective contraction of time is often observable in the acceleration of

particular behaviors [13] and may be associated with increased cognitive stimulation and stress

[26, 27]. As such, cities manifest the opposite character to biological organisms, where the

target of optimization is the minimization of energy dissipation [4, 6, 7] and the pace of change

is determined by network constraints making larger organisms slower. This makes transport

in larger urban networks less efficient, which is necessary to enable the growth in the city’s

primary social functions [28]. It is because dissipative processes scale like social interactions

that cities can be scale invariant as larger cities can incur the same average costs per unit of

productivity as small towns, while growing in functional diversity [28].

This acceleration and concentration of interactions in cities has parallels in other systems

that are driven by attractive forces and that become denser with scale. The simplest such sys-
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tems are stars, whose luminosity (power emitted) increases superlinearly with mass. However,

differences in the nature of interactions and transport processes make their scaling exponents

different quantitatively and ultimately limit the complexity that a star can achieve. It is a fas-

cinating question if networks that densify with increasing scale [29], from ecosystems to infor-

mation networks in biology and society, share any similarities with cities despite their different

relationships to physical space.

In summary, I showed how the general scaling properties of cities can be derived from a

set of local principles that account for their gradual development, from the bottom-up, as den-

sifying social networks subject to geometric and efficiency constraints on urban infrastructure

networks. This theoretical framework shows how the many social, infrastructural, spatial and

temporal aspects of the city are entangled and expresses their common origin in terms of fun-

damental simpler dynamics. Unveiling these deeper connections is a necessary step towards a

more scientific approach to urban planing and policy and may shed light on some of the essential

conditions that have lead to the extraordinary development of complex human societies.
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Urban Scaling Relations Model (D=2,H=1) Model (D, H) Effect
Land area A = aNα α = 2

3 α = D

D+H
spatial densification

Network volume An = An0Nν ν = 5
6 ν = 1− δ = D

2+DH−H

D(D+H) growth of infrastructure
Network length L = L0Nλ λ = 2

3 λ = α area filling networks
Average network width S̄ = S̄0N σ̄ σ̄ = 5

6 σ̄ = 1− δ widening of roads
Interactions per capita y = Y0N δ δ = 1

6 δ = H

D(D+H) increased interactions
Socioeconomic rates Y = Y0Nβ β = 7

6 β = 1 + δ = D
2+DH+H

D(D+H) acceleration of social rates
Power dissipation W = W0Nω ω = 7

6 ω = 1 + δ increased congestion
Land Value PL = P0N δL δL = 3

2 δL = 1 + α + δ increased land rents

Table 1: Urban indicators and their scaling relations. The first column shows expected mean-
field values for scaling exponents vs. population size (D = 2, H = 1). The second column
shows the value of scaling quantities in general D spatial dimensions. The third column de-
scribes the effect.

Acknowledgements

I thank José Lobo, Geoffrey West and HyeJin Youn for discussions. This research is par-

tially supported by the Rockefeller Foundation, the James S. McDonnell Foundation (grant

no. 220020195), the National Science Foundation (grant no. 103522), the John Templeton

Foundation (grant no. 15705) and by a gift from the Bryan J. and June B. Zwan Foundation.

12



(a) (b)

Figure 1: Scaling of urban infrastructural and socioeconomic quantities. (a) Total lane miles
(volume) of roads in US metropolitan areas in 2006 (blue dots). Lines show the best fit to a
scaling relation Y = Y0N

β (red), with β = 0.849± 0.038 (95% CI, R
2 = 0.65), the theoretical

prediction for β = 5/6 (yellow) and linear scaling β = 1 (black). (b) Gross Metropolitan
Product of US metropolitan area in 2006 (green dots). Lines show the best fit (red), with β =
1.126 ± 0.023 (95% confidence interval, R

2 = 0.96), the theoretical prediction, β = 7/6
(yellow), and proportional scaling, β = 1 (black).
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