A Refinement of the Common Cause Principle

Nihat Ay

SFI WORKING PAPER: 2008-01-001

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our external faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or funded by an SFI grant.

©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the author(s). It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may be reposted only with the explicit permission of the copyright holder.

www.santafe.edu
A REFINEMENT OF THE COMMON CAUSE PRINCIPLE

NIHAT AY1,2

ABSTRACT. I study the interplay between stochastic dependence and causal relations within the setting of Bayesian networks and in terms of information theory. The application of a recently defined causal information flow measure provides a quantitative refinement of Reichenbach’s common cause principle.

Keywords: causality theory; Bayesian networks; information flows; common cause principle; multi-information

CONTENTS

1. Introduction 1
2. Preliminaries from Pearl’s causality theory 4
3. Entropy, mutual information, and the principle of common cause 7
4. Causal information flows 9
5. Stochastic dependence and information flows 11
6. Appendix 19
Acknowledgments 25
References 25

1. INTRODUCTION

The problem of system identification. Understanding the interplay and the function of a system’s components generally requires not only phenomenological studies of global complex behaviour but also the study of the system’s functional response to controlled experimental perturbations. Ideally, with a corresponding experimental design one aims at a complete identification of the system’s mechanisms. In the context of biological systems this is clearly a problematic issue. On the one hand, a biological system may not be resistant to all experimental perturbations that would allow for its identification, and, on the other hand, the identity of the system may change as consequence of perturbations. Furthermore, in addition to these problems, there are also technology constraints dictated by the scientific and financial means at hand. In view of these limitations, one has to address the problem of specifying the kind of conclusions that can be drawn based on a particular set of feasible experiments. This requires a theoretical tool that is capable of modelling not only the system itself but also the data generating experimental perturbations.

Most system-theoretical models distinguish three levels of mechanistic specifications:

(1) specification of the system’s units,
(2) structural description of the relations between the units,
(3) functional description of the units’ interactions.
Graph theory turns out to be very useful in providing a mathematical structure that serves as a model for levels (1) and (2) of the system description. In this model, the nodes of a graph represent the units of the system and the edges describe their relationship. In view of the model diversity currently present in the literature, an interpretation of edges strongly depends on the particular context. In this paper we follow Pearl's conceptual line [Pearl, 2000] by using edges as a qualitative representation of possible direct causal effects. Within Pearl's theory the functional description of level (3) is based on the so-called structural equation model originally developed in genetics [Wright, 1921]. In order to provide a self-consistent and coherent presentation I shall give a review of relevant concepts of Pearl's causality theory including the structural equation model (see the appendix).

In Pearl's causality theory, the concept of intervention, which is intended to capture controlled experimental perturbations, plays an essential role in modelling causal effects within the system. Although experimental intervention techniques such as knockout methods in genetics are of utmost importance for understanding function in biological systems, the functional interpretation of corresponding post-interventional observations is often based on heuristic arguments and needs further justification. Here, the interplay between causal effects and general stochastic associations is still a source of confusion. In order to identify associations and the way they are generated by cause-effect relations in a given system, observation and intervention are considered as elementary experimental operations. The identification of associations of system variables is a subject of classical statistics and requires only the observation of these variables, whereas the identification of cause-effect relations in general requires experimental intervention. Pearl's theory addresses the central problem of finding particular situations in which causal effects can be identified without any active experimental intervention based on purely non-interventional observations. It is quite surprising that, indeed, there are several criteria, including the back-door and front-door criteria, that provide such an identifiability test for causal effects [Pearl, 2000]. Unfortunately, the assumptions here require some structural information about the underlying network, which shows that replacement of interventional data by purely observational data is not possible without any cost.

If the structural information that is required in above-mentioned identifiability criteria is not available, some weaker statements on the cause-effect relations can still be made. For instance, Reichenbach's principle of common cause [Reichenbach, 1956], which is phrased by the slogan no correlation without causation, identifies a class of possible causal relations between two variables A and B if they are stochastically dependent.\(^1\) It predicts that A is a cause of B, B is cause of A, or there is a common cause of A and B as shown in Figure 2. Clearly, in this qualitative statement the particular value of stochastic dependence of A and B is not used. A quantitative version of this statement would provide more information about the system. This paper extends the common cause principle in two directions: On the one hand, the main results (Theorems 3 and 4, Corollary 1) refer to more than two variables, and, on the other hand, they make quantitative statements by relating the stochastic dependence of these variables to causal information flows introduced in [Ay & Polani, 2007]. The following instructive example illustrates the main idea of the paper.

An example. Consider, as shown in Figure 1, two units A and B, where A has a direct causal effect on B but not vice versa.

\(^1\)We will use the term correlation as synonym of stochastic dependence.
In this situation, all stochastic dependence between A and B is due to the causal effect of A on B, and we can use the mutual information as measure for the causal information flow from A to B:

\[IF(A \rightarrow B) := H(B) - H(B|A) = I(A : B), \]

where $H(B)$ denotes the entropy of B, $H(B|A)$ denotes the conditional entropy of B given A, and $I(A : B)$ is the mutual information of A and B (see Section 3). This definition is somewhat confusing. The suggestive notation of the left-hand side of (1) reflects the intuition that the causal information flow should be a directional quantity. On the other hand, mutual information is symmetric in A and B. If we just observe A and B and do not know the direction of the arrow there is no way to decide whether mutual information is an appropriate measure for the causal information flow from A to B. The situation becomes even more subtle if we have a common cause C of A and B which induces positive mutual information between A and B without having any causal information flow between A and B. Figure 2 illustrates three completely different causal structures that allow for observational equivalence on A and B:

\[
\begin{align*}
I_F(a) &:= IF(A \rightarrow B), \\
I_F(b) &:= IF(B \rightarrow A), \\
I_F(c) &:= IF(C \rightarrow A) + IF(C \rightarrow B).
\end{align*}
\]

In all three cases the mutual information $I(A : B)$ provides a lower bound for the total information flow:

\[I(A : B) = I_F(a) = I_F(b) \leq I_F(c). \]

The first two equalities in (2) trivially follow from the symmetry of mutual information, whereas the inequality is a consequence of the conditional independence structure of the network (c) which implies $H(A, B|C) = H(A|C) + H(B|C)$, and therefore

\[
\begin{align*}
I(A : B) &= I(A : C) + I(B : C) + H(A|C) + H(B|C) - H(A, B) \\
&\leq I(A : C) + I(B : C) + H(A|C) + H(B|C) - H(A, B|C) \\
&= I(A : C) + I(B : C).
\end{align*}
\]

Thus, in this example, without knowing the concrete underlying causal structure (a), (b), or (c) and corresponding mechanisms that generate the observed data distribution, we can give a lower
bound for the total causal information flow in the network. This example represents a simplified quantitative version of Reichenbach’s common cause principle which, in our setting infers positive causal information flow based on positive mutual information (stochastic dependence).

Organization of the paper. In the following Section 2 some concepts of Pearl’s theory of causation are briefly outlined. This theory is based on a formal definition of intervention within the framework of Bayesian networks. Motivated by Reichenbach’s principle of common cause, in Section 3 an optimal graphical criterion for the equivalence of intervention and observation will be provided. This criterion characterizes those cases in which stochastic dependence can be interpreted as causal information flow, a notion discussed in Section 4. The main Section 5 provides a lower bound for information flows in terms of the multi-information of random variables and shows how this extends the common cause principle. Finally, the appendix contains a motivation of Pearl’s concept of intervention in terms of the structural equation model, and, furthermore, the proofs of the theorems of the paper.

2. Preliminaries from Pearl’s causality theory

Directed acyclic graphs. We consider a directed graph \(G := (V,E) \) where \(V \neq \emptyset \) is a finite set of nodes and \(E \subseteq V \times V \) is a set of edges between the nodes. An ordered sequence \((v_0, \ldots, v_k)\), \(k \geq 0 \), of distinct nodes is called a (directed) path from \(v_0 \) to \(v_k \) with length \(k \) if it satisfies \((v_i, v_{i+1}) \in E \) for all \(i = 0, \ldots, k−1 \). Given two subsets \(A \) and \(B \) of \(V \), and a path \(\gamma = (v_0, \ldots, v_k) \) with \(v_0 \in A \) and \(v_k \in B \), we write \(A \overset{\gamma}{\rightarrow} B \). If there exists a path such that \(A \overset{\gamma}{\rightarrow} B \) we write \(A \rhd B \), and \(A \not\rightarrow B \) if this is not the case. Note that \(v \rhd v \) for all \(v \in V \) (path of length 0). A directed acyclic graph (DAG) is a graph that does not contain two distinct nodes \(v_0 \) and \(v_k \) with \(v_0 \rhd v_k \) and \(v_k \rhd v_0 \). Given a DAG, we define the parents of a node \(v \) as \(\text{pa}(v) := \{ u \in V : (u, v) \in E \} \) and its children as \(\text{ch}(v) := \{ w \in V : (v, w) \in E \} \). A set \(C \subseteq V \) is called ancestral if for all \(v \in C \) the parents \(\text{pa}(v) \) are also contained in \(C \). The smallest ancestral set that contains a set \(A \) is denoted by \(\text{an}(A) \), and one has

\[
\text{(3)} \quad \text{an}(A) = \{ v \in V : v \rhd A \}.
\]

In his graphical models approach to causality, Pearl assumes a DAG as the structural specification of causal networks [Pearl, 2000]. Within this specification an edge \((v, w)\) is interpreted as a possible direct causal effect of the node \(v \) (direct cause) on the node \(w \) (direct effect). In other words, if there is no edge from \(v \) to \(w \), then there is no possibility of directly influencing \(w \) by \(v \). Similarly, given two non-empty and disjoint sets \(A \) and \(B \), \(A \) is called a cause of \(B \), and \(B \) an effect of \(A \), if \(A \rhd B \). More precisely, \(A \not\rhd B \) means that there is no possibility for direct or indirect causal influence of \(A \) on \(B \). A node \(v \in V \setminus (A \cup B) \) is called common cause of \(A \) and \(B \), if there is a path from \(v \) to \(A \) that does not meet \(B \) and a path from \(v \) to \(B \) that does not meet \(A \).

Causal effects in Bayesian networks. In addition to the structural description given by a DAG one has to specify the nodes’ interactions by a mechanistic description. In order to do so, for every node \(v \in V \) we consider a finite and non-empty set \(X_v \) of states. Given a subset \(A \subseteq V \), we write \(X_A \) instead of \(\times_{v \in A} X_v \) (configuration set on \(A \)), and we have the natural projection

\[
X_A : X_V \to X_A, \quad (x_v)_{v \in V} \mapsto x_A := (x_v)_{v \in A}.
\]

Note that in the case of \(A = \emptyset \) the configuration set consists of exactly one element, namely the empty configuration which we denote by \(\epsilon \).
A *distribution* on \mathcal{X}_V is a vector $p = (p(x))_x \in \mathbb{R}^{\mathcal{X}_V}$ with $p(x) \geq 0$ for all $x \in \mathcal{X}_V$ and $\sum_x p(x) = 1$. Given a distribution p on \mathcal{X}_V, the X_A’s become random variables, and we write

$$p(x_A) := \Pr\{X_A = x_A\} \quad \text{for all } x_A \in \mathcal{X}_A,$$

and, if $p(x_A) > 0$,

$$(4) \quad p(x_B|x_A) := \Pr\{X_B = x_B|X_A = x_A\} \quad \text{for all } x_B \in \mathcal{X}_B.$$

In particular, we have $p(x_B|\epsilon) = p(x_B)$ if $A = \emptyset$.

Given a DAG, we consider a family of conditional distributions $k^v(x_{pa(v)}; x_v), v \in V$, that is

$$k^v(x_{pa(v)}; x_v) \geq 0 \quad \text{and} \quad \sum_{x_v} k^v(x_{pa(v)}; x_v) = 1.$$

If $pa(v) = \emptyset$ we write $k^v(x_v)$ instead of $k^v(\epsilon; x_v)$. A triple $\mathcal{B} = (V, E, k)$ consisting of a DAG $G = (V, E)$ and such a family $k = (k^v)_{v \in V}$ of kernels is called a *Bayesian network*. Within Pearl’s causality theory, the kernels k^v are interpreted mechanistically as autonomous physical processes that generate the states of the individual nodes v. This interpretation justifies to assume the stability of a node’s mechanism with respect to external intervention in other nodes. The mechanistic interpretation can be motivated by the so-called *structural equation model*, which relates the kernels k^v to deterministic functions together with hidden random disturbances. This relation allows for a transparent definition of interventional operations which are essential for understanding causal effects. It turns out that all causal aspects are independent from the concrete representation of the kernels k^v by structural equations. Therefore, I continue my presentation within the context of Bayesian networks and briefly review the structural equation model in the appendix of the paper.

The transition from the mechanistic description, given by a Bayesian network, to the phenomenological level is made by the following formula for the joint distribution $p(\mathcal{B})$ on \mathcal{X}_V:

$$(5) \quad p(x) = p(\mathcal{B}; x) := \prod_{v \in V} k^v(x_{pa(v)}; x_v).$$

If a given distribution p on \mathcal{X}_V can be decomposed in this way, we say that it *admits a recursive factorization according to G*. In that case one has $k^v(x_{pa(v)}; x_v) = p(x_v|x_{pa(v)})$ if $p(x_{pa(v)}) > 0$.

Given a Bayesian network $\mathcal{B} = (V, E, k)$, one has the possibility of testing the system’s reaction to external intervention. More precisely, we divide the set V into a subset A where the intervention takes place and the complement $D := V \setminus A$. Intervening in A with configuration $x'_A \in \mathcal{X}_A$ is modeled by the replacement of the mechanisms $k^v, v \in A$, by the following constant mechanisms:

$$k^v_{int}(x_{pa(v)}; x_v) := \delta_{x'_v}(x_v) = \begin{cases} 1, & \text{if } x_v = x'_v, \\ 0, & \text{otherwise}. \end{cases}$$

This replacement of mechanisms leads to a new Bayesian network $\hat{\mathcal{B}}$ and a corresponding joint distribution according to (5) given by

$$(6) \quad p(x_D, x_A|x'_A) := p(\hat{\mathcal{B}}; x) = \prod_{v \in A} \delta_{x'_v}(x_v) \prod_{v \in D} k^v(x_{pa(v)}; x_v).$$

Summation over all x_A finally gives us

$$p(x_D|x'_A) := \sum_{x_A} p(x_D, x_A|x'_A) = \prod_{v \in D} k^v(x_{pa(v)}\setminus A; x'_v \cup A; x_v).$$
Replacing the pair \((x_D, x'_A)\) by a global configuration \(x = (x_D, x_A)\) allows us to write this in a more transparent way:

\[
p(x_D|x_A) = \prod_{v \in D} k^v(x_{\text{pa}(v)}; x_v).
\]

Thus, compared with the pre-interventional distribution (5), the post-interventional distribution (7) is obtained simply by removing all factors \(k^v(x_{\text{pa}(v)}; x_v)\) where \(v\) is an element of \(A\) (truncated factorization). This is the probability of observing \(X_D = x_D\) after having set \(X_A = x_A\). It has to be distinguished from the probability \(p(x_D|x_A)\) of observing \(X_D = x_D\) after having observed \(X_A = x_A\). I refer to these two different ways of conditioning as interventional and observational conditioning and use two bars “∥” in the first and one bar “|” in the second case. Obviously, for \(A = \emptyset\) we have \(p(x_B|\emptyset) = p(x_B)\).

Now consider \(B \subseteq D = V \setminus A\). Then

\[
p(x_B|x_A) = \sum_{x_{D \setminus B}} p(x_B, x_{D \setminus B}|x_A) = \sum_{x_{D \setminus B} \in D} \prod_{v \subseteq D} k^v(x_{\text{pa}(v)}; x_v).
\]

Note that interventional conditioning, in contrast to observational conditioning (4), is defined for all \(x_A \in \mathcal{X}_A\). This is consistent with the semantics of a mechanism: The mechanism is defined and virtually present even for cases that do not appear in the actual distribution. The kernel \(\mathcal{X}_A \times \mathcal{X}_B \rightarrow [0,1], (x_A, x_B) \mapsto p(x_B|x_A)\), is called causal effect. I use \(p(x_B|x_A)\) as a shorthand notation for the causal effect and hope that the distinction from its value at \((x_A, x_B)\) becomes clear within the particular context.

Example 1. This instructive example illustrates the difference between interventional and observational conditioning and gives us a hint how to relate these two kinds of conditioning to each other. Consider the node set \(V = \{1, 2, 3, 4\}\) and the edge set \(E = \{(1, 2), (1, 3), (2, 4), (3, 4)\}\) as shown in Figure 3.

![Figure 3](image)

For simplicity we assume that all \(k^v(x_{\text{pa}(v)}; x_v), v \in V\), are strictly positive. The joint distribution is given as

\[
p(x_1, x_2, x_3, x_4) = k^1(x_1)k^2(x_1; x_2)k^3(x_1; x_3)k^4(x_2, x_3; x_4).
\]

Firstly we compute the causal effect \(p(x_3|x_2)\) by using formula (8):

\[
p(x_3|x_2) = \sum_{x_1, x_4} p(x_1, x_3, x_4|x_2)
\]

\[
= \sum_{x_1, x_4} k^1(x_1)k^3(x_1; x_3)k^4(x_2, x_3; x_4)
\]

\[
= \sum_{x_1} k^1(x_1)k^3(x_1; x_3)
\]

\[
= p(x_3).
\]
As we see, in this case both kinds of conditioning lead to the same distribution.

As we see, this is not dependent on \(x_2\), which is consistent with the fact that there is no edge from 2 to 3. On the other hand, for the reason that both, node 2 and node 3 receive information from node 1, we expect that, in general, \(p(x_3|x_2) \neq p(x_3)\). This can be seen as follows:

\[
p(x_3|x_2) = \frac{p(x_2, x_3)}{p(x_2)} = \frac{\sum_{x_1, x_3} k^1(x_1)k^2(x_1; x_2)k^3(x_1; x_3)k^4(x_2, x_3; x_4)}{\sum_{x_1, x_3, x_4} k^1(x_1)k^2(x_1; x_2)k^3(x_1; x_3)k^4(x_2, x_3; x_4)} = \frac{\sum_{x_1} k^1(x_1)k^2(x_1; x_2)k^3(x_1; x_3)}{\sum_{x_1} k^1(x_1)k^2(x_1; x_2)}.
\]

Now instead of nodes 2 and 3 we consider the nodes 1 and 4, which do not have a common cause, and compute the causal effect \(p(x_4|x_1)\):

\[
p(x_4|x_1) = \sum_{x_2, x_3} p(x_2, x_3, x_4|x_1) = \sum_{x_2, x_3} k^2(x_1; x_2)k^3(x_1; x_3)k^4(x_2, x_3; x_4) = \sum_{x_2, x_3} k^1(x_1)k^2(x_1; x_2)k^3(x_1; x_3)k^4(x_2, x_3; x_4)k^1(x_1) = \frac{p(x_1, x_4)}{p(x_1)} = p(x_4|x_1).
\]

As we see, in this case both kinds of conditioning lead to the same distribution.

Whether a causal effect \(p(x_B|x_A)\) and the corresponding conditional distribution \(p(x_B|x_A)\) coincide or not depends, as Example 1 indicates, on the presence of a common cause of \(A\) and \(B\). In the next section, Reichenbach’s principle of common cause [Reichenbach, 1956] will provide an optimal graphical condition for the equivalence of interventional and observational conditioning, which will be summarized in Theorem 2.

3. Entropy, Mutual Information, and the Principle of Common Cause

The main intention of this paper is to carefully relate stochastic dependence (correlation) to causation in terms of information-theoretic quantities. To this end, we recall some basic definitions which already appeared in the introduction (see [Cover & Thomas, 1991] for details): Consider two subsets \(A\) and \(B\) of \(V\). The entropy of \(X_B\) is defined as

\[
H_p(X_B) := -\sum_{x_B \in X_B} p(x_B) \log_2 p(x_B).
\]

This quantity is a natural measure of the uncertainty that one has about the outcome of \(X_B\), that is, the information one expects to gain by observing that outcome. Knowing the outcome of \(X_A\) in general changes the uncertainty that one has about the outcome of \(X_B\). The resulting mean uncertainty is then quantified by the conditional entropy of \(X_B\) given \(X_A\):

\[
H_p(X_B|X_A) := -\sum_{x_A \in X_A, x_B \in X_B} p(x_A, x_B) \log_2 p(x_B|x_A) \leq H_p(X_B).
\]
In terms of these entropy measures, the mutual information of X_B and X_A is defined as

\begin{align}
I_p(X_A : X_B) &:= H_p(X_B) - H_p(X_B | X_A) \\
&= \sum_{x_A} p(x_A) \sum_{x_B} p(x_B | x_A) \log_2 \left(\frac{p(x_B | x_A)}{\sum_{x'_A} p(x'_A) p(x_B | x'_A)} \right) \\
&= \sum_{x_A, x_B} p(x_A, x_B) \log_2 \left(\frac{p(x_A, x_B)}{p(x_A) p(x_B)} \right).
\end{align}

According to (9) it measures the uncertainty reduction of the outcome of X_B provided by the outcome of X_A and vice versa. The mutual information $I_p(X_A : X_B)$ is a natural symmetric measure for the stochastic dependence of X_A and X_B.

Now we consider a Bayesian network $\mathcal{B} = (V, E, k)$ and the ancestral sets $a := \text{an}(A)$ and $b := \text{an}(B)$ (see equation (3)). Then the above-mentioned quantities can be computed with respect to the joint distribution $p = p(\mathcal{B})$, generated by \mathcal{B} according to (5), and we obtain the following upper bounds for the mutual information of X_A and X_B.

\begin{align}
I(X_A : X_B) &\leq I(X_a : X_b) \\
&= H(X_a) + H(X_b) - H(X_{a \cap b}) \\
&= H(X_{a \cap b}, X_a \cap b) + H(X_{b \cap a}, X_a \cap b) - H(X_{a \cap b}, X_a \cap b, X_{b \cap a}) \\
&= \left(H(X_{a \cap b}) + H(X_{b \cap a} | X_{a \cap b}) \right) + \left(H(X_{a \cap b}) + H(X_{b \cap a} | X_{a \cap b}) \right) \\
&- \left(H(X_{a \cap b}) + H(X_{a \cap b} | X_{a \cap b}) + H(X_{b \cap a} | X_{a \cap b}, X_{a \cup b}) \right) \\
&= \left(H(X_{a \cap b}) + H(X_{a \cap b} | X_{a \cap b}) \right) + \left(H(X_{b \cap a}) + H(X_{b \cap a} | X_{a \cap b}) \right) \\
&- \left(H(X_{a \cap b}) + H(X_{a \cap b} | X_{a \cap b}) + H(X_{b \cap a} | X_{a \cap b}) \right) \\
&= H(X_{a \cap b}) \\
&\leq \sum_{v \in a \cap b} \log_2 |X_v|.
\end{align}

Clearly, if $a \cap b = \emptyset$ then the configuration set $X_{a \cap b}$ consists of exactly one element which is the empty configuration. In that case the entropy vanishes and, according to (12), this implies stochastic independence of X_A and X_B. On the other hand, it is easy to see that the set $a \cap b$ is empty if and only if none of the three conditions in Theorem 1 is satisfied, which proves the following version of Reichenbach’s principle of common cause [Reichenbach, 1956].

Theorem 1 (Principle of common cause). Let $\mathcal{B} = (V, E, k)$ be a Bayesian network, and let A and B be two non-empty disjoint subsets of V such that X_A and X_B are stochastically dependent with respect to the distribution $p(\mathcal{B})$. Then one of the following conditions is satisfied:

1. A is a cause of B: $A \leadsto B$,
2. B is a cause of A: $B \leadsto A$,
3. A and B have a common cause: There is a node $v \in V \setminus (A \cup B)$ and a path from v to A outside of B and a path from v to B outside of A.

The principle of common cause identifies qualitative causal relations of two variables based on their stochastic dependence. The concept of d-separation, which is not applied in this paper, provides a direct proof of Theorem 1 [Pearl, 2000, Williamson, 2005]. The alternative proof based on inequality (12) helps understanding the connection between the common cause principle and information theory. The elaboration of this connection is the main focus of the paper.

Applying the notion of causal information flow [Ay & Polani, 2007], I shall provide a quantitative extension of the common cause principle which implies the estimate (12). To this end, we need a graphical criterion for the equivalence of interventional and observational conditioning where Theorem 1 can serve as a guiding scheme. Reichenbach’s principle of common cause specifies three qualitatively different but not necessarily disjoint classes of causal relations that give rise to the stochastic dependence of variables. In general, stochastic dependence is a mixed consequence of the three causal relationships (1), (2), and (3) that appear in Theorem 1. Furthermore, it is clear that in the case of (2) or (3) stochastic dependence that is not due to the causal effect of A on B is possible. Therefore, Reichenbach’s principle suggests to characterize the case where causal effects and conditional distributions coincide by assuming stochastic dependence as consequence of causal relations of the first kind only. Therefore, we exclude the cases (2) and (3) in the following theorem.

Theorem 2. Let $\mathcal{B} = (V, E, k)$ be a Bayesian network, let A and B be two non-empty disjoint subsets of V such that B is not a cause of A and there is no common cause of A and B. Then the conditional distribution and the causal effect coincide:

$$p(x_B|x_A) = p(x_B|x_A) \quad \text{for all } x_A \text{ with positive probability } p(x_A).$$

This condition is optimal in the sense that, if it is not satisfied, then there exists a Bayesian network $\mathcal{B}' = (V, E, k')$ for which there are x_A and x_B with $p(x_A) > 0$ and $p(x_B|x_A) \neq p(x_B|x_A)$.

Theorem 2 implies that, knowing the marginal distribution $p(x_A, x_B)$ (which we assume to be strictly positive here), and knowing that B is not a cause of A and there is no common cause of A and B, one can compute the causal effect as

$$(13) \quad p(x_B|x_A) = p(x_B|x_A) = \frac{p(x_A, x_B)}{p(x_A)} = \frac{p(x_A, x_B)}{\sum_{x_B'} p(x_A, x_B')}.$$

In Pearl’s terminology, this is a special example of an identifiable causal effect $p(x_B|x_A)$. On the other hand, if we do not know anything about the underlying graph structure, and, in particular, if we do not know whether the conditions of Theorem 2 are satisfied or not, it is not possible to use formula (13) for computing the causal effects explicitly. But this does not mean that we cannot say anything about the causal structure as the principle of common cause shows. The intention of this paper is to point out that we can say even more than that by using a quantitative extension of the common cause principle based on the notion of causal information flows [Ay & Polani, 2007]. This notion is introduced in the following section.

4. Causal information flows

In order to quantify causal effects instead of general associations, in [Ay & Polani, 2007] we suggested to replace the conditional probabilities $p(x_B|x_A)$ in (10) by the interventional probabilities $p(x_B|x_A)$. This suggestion was based on concepts that had been discussed in the previous work [Klyubin et al., 2004, Ay & Krakauer, 2007]. Given a Bayesian network $\mathcal{B} = (V, E, k)$ we consider the joint distribution p generated according to (5). Replacing $p(x_B|x_A)$ by $p(x_B|x_A)$ means
that we consider a new joint distribution \(\hat{p}(x_A, x_B) := p(x_A)p(x_B|x_A) \) and the corresponding mutual information of \(X_A \) and \(X_B \):

\[
IF_\mathcal{B}(X_A \rightarrow X_B) := I_\hat{p}(X_A : X_B) = \sum_{x_A} p(x_A) \sum_{x_B} p(x_B|x_A) \log_2 \left(\frac{p(x_B|x_A)}{\sum_{x_A'} p(x_A') p(x_B|x_A')} \right).
\]

This measure quantifies the causal effect of \(A \) on \(B \) and has been termed (causal) information flow in [Ay & Polani, 2007]. We also use the notation \(IF \) where the explicit reference to the underlying Bayesian network \(\mathcal{B} \) is omitted.

If \(B \) is not a cause of \(A \) and there is no common cause of \(A \) and \(B \), then, according to Theorem 2, the mutual information of \(X_A \) and \(X_B \) and the causal information flow from \(A \) to \(B \) coincide:

\[
\text{(14)} \quad I(X_A : X_B) = IF(X_A \rightarrow X_B).
\]

In the following examples, all pairs of sets \(A \) and \(B \) have this property.

Examples 2.

1. **Direct causes.** Let \(\mathcal{B} = (V, E, k) \) be a Bayesian network. Then for all \(v \in V \) the sets \(A = \text{pa}(v) \) and \(B = \{v\} \) satisfy

\[
\text{(15)} \quad I(X_{\text{pa}(v)} : X_v) = IF(X_{\text{pa}(v)} \rightarrow X_v).
\]

2. **Ancestral sets.** Let \(\mathcal{B} = (V, E, k) \) be a Bayesian network, let \(A \) be an ancestral subset of \(V \), and let \(B \) be an arbitrary subset of \(V \setminus A \). Then (14) holds.

3. **Feed-forward networks.** Here we consider a Bayesian network \(\mathcal{B} = (V, E, k) \) with a particular DAG structure, known as **feed-forward structure**: Given \(L \) non-empty, finite, and disjoint sets \(V_1, \ldots, V_L \) (layers), we consider a node set \(V \) and an edge set \(E \) satisfying

\[
V = \bigcup_{i=1}^{L} V_i, \quad E \subseteq \bigcup_{i=1}^{L-1} (V_i \times V_{i+1}).
\]

Furthermore, let \(A \subseteq V_i \) and \(B \subseteq V_j \) be two non-empty sets with \(i < j \). Then:

\[
\text{(16)} \quad \text{an}(B) \cap V_i \subseteq A \quad \Rightarrow \text{(14)}.
\]

In the networks (a)-(d) of Figure 4, \(A \) is given by the lower subset and \(B \) is given by the upper subset.

![Figure 4](image-url)
The subsets A and B of the feed-forward networks shown in Figure 4 relate to various information-theoretic studies within theoretical neuroscience. In these studies, the maximization of a corresponding information-theoretic quantity, often causally interpreted as information flow, has been considered as a first principle of learning and could provide explanation for experimental findings [Laughlin, 1981, Rieke et al., 2003, Barlow, 1959, Barlow, 1989, Atick, 1992, Linsker, 1988]. On the other hand, it is clear that these studies are restricted to very special cases and extensions to more general situations including information flows in recurrent networks require a careful consideration of causality.

(4) Trees. Let $\mathcal{B} = (V, E, k)$ be a Bayesian network where $\mathcal{G} = (V, E)$ is a tree, which means that there are no cycles in the undirected version of \mathcal{G} (see Figure 5).

\begin{figure}[h]
\centering
\caption{}
\end{figure}

If $v, w \in V$ are two distinct nodes that satisfy $v \sim w$, the connecting path is unique. This implies (14).

5. STOCHASTIC DEPENDENCE AND INFORMATION FLOWS

Local information flows. According to the equation (15) one can interpret the mutual information of $X_{pa(v)}$ and X_v causally as information flow. Given distinct nodes v_1, \ldots, v_n in V, equation (15) can also be used to relate more general stochastic dependence of these nodes to causal information flows. In order to derive such a relationship, we consider the so-called multi-information of (discrete) random variables X_1, \ldots, X_n with joint distribution p:

\[
I_p(X_1, \ldots, X_n) := \sum_{x_1, \ldots, x_n} p(x_1, \ldots, x_n) \log_2 \left(\frac{p(x_1, \ldots, x_n)}{p(x_1) \cdots p(x_n)} \right) \\
= \sum_{i=1}^n H_p(X_i) - H_p(X_1, \ldots, X_n).
\]

This is an extension of the mutual information to the case of more than two random variables. Now we want to address the following problem: Given the stochastic dependence of nodes $\{v_1, \ldots, v_n\} \subseteq V$, which is measured by the multi-information of X_{v_1}, \ldots, X_{v_n}, can we say anything about the required causal information flows in the system that lead to that stochastic dependence? In order to illustrate how this can be done, we consider the instructive special case of an ancestral set $A \subseteq V$ of a Bayesian network $\mathcal{B} = (V, E, k)$. We choose a numbering $v_i, i \in \{1, \ldots, n\}, n = |A|$, of the nodes in A that satisfies

(17) $v_i \in pa(v_j) \Rightarrow i < j.$
Note that such a numbering always exists in an ancestral set. With the chain rule for the entropy we obtain

\[
I(X_{v_1}, \ldots, X_{v_n}) = \sum_{i=1}^{n} H(X_{v_i}) - H(X_{v_1}, \ldots, X_{v_n})
\]

\[
= \sum_{i=1}^{n} H(X_{v_i}) - \sum_{i=1}^{n} H(X_{v_i} | X_{v_1}, \ldots, X_{v_{i-1}})
\]

(entropy chain rule)

\[
= \sum_{i=1}^{n} H(X_{v_i}) - \sum_{i=1}^{n} H(X_{v_i} | X_{\text{pa}(v_i)})
\]

(conditional independence of \(X_{v_i}\) and \(X_{v_1}, \ldots, X_{v_{i-1}}\) given \(X_{\text{pa}(v_i)}\))

\[
= \sum_{i=1}^{n} I(\text{pa}(v_i) : X_{v_i}).
\]

According to (15), this is equivalent to

\[
(18) \quad I(X_{v_1}, \ldots, X_{v_n}) = \sum_{i=1}^{n} IF(X_{\text{pa}(v_i)} \rightarrow X_{v_i}).
\]

Note that this result is valid for any numbering of the nodes in \(A\) and does not depend on the particular one that we have chosen. Only the existence of a numbering that satisfies (17) is required, which is guaranteed by the assumption that \(A\) is an ancestral set.

The equation (14), with its corresponding Examples 2, and the equation (18) show how stochastic dependence can be expressed in terms of causal information flows. But we have to keep in mind that these equalities are based on some knowledge about the network structure. For instance, in order to obtain (18) we assumed that the set \(A = \{v_1, \ldots, v_n\}\) is an ancestral set. But how can we relate the stochastic dependence of the nodes in \(A\) to causal information flows if we do not assume \(A\) to be ancestral? It is somewhat surprising that we can skip this assumption and are still able to identify the stochastic dependence at least as a lower bound for the total information flow. This is the message of the following theorem.

Theorem 3. Let \(\mathcal{B} = (V, E, k)\) be a Bayesian network, and let \(v_1, \ldots, v_n\) be distinct elements of \(V\). Then

\[
(19) \quad I(X_{v_1}, \ldots, X_{v_n}) \leq \max_{j \in \{1, \ldots, n\}} \sum_{i \neq j}^{n} IF(X_{\text{pa}(v_i)} \rightarrow X_{v_i}) \leq \sum_{i=1}^{n} IF(X_{\text{pa}(v_i)} \rightarrow X_{v_i}).
\]

Intuitively, this theorem states that, in order to generate a particular value of stochastic dependence in \(A = \{v_1, \ldots, v_n\}\), the sum of local information flows within and into \(A\) has to exceed that value.

Example 3. Consider the units \(V = \{v_0, v_1, \ldots, v_n\}\) with state sets \(\{0, 1\}\). Assume that the unit \(v_0\) randomly generates a state \(X_{v_0}\) and transmits it without any modification to all other units. Thus, \(X_v = X_{v_0}\) (almost surely) for all \(v\). The DAG is given by the edge set \(E = \{v_0\} \times \{v_1, \ldots, v_n\}\) (see Figure 6). Now consider the subset \(A = \{v_1, \ldots, v_n\}\).
There are no direct causal effects within A. Nevertheless, in this example, the stochastic dependence of the variables X_v, $v \in A$, gives a good estimate of the total causal information flow in the network:

$$\sum_{i=1}^{n} \text{IF}(X_{\text{pa}(v_i)} \rightarrow X_{v_i}) = n H(X_{v_0})$$

$$\geq (n - 1) H(X_{v_0})$$

$$= \max_{j \in \{1, \ldots, n\}} \sum_{i=1 \atop i \neq j}^{n} \text{IF}(X_{\text{pa}(v_i)} \rightarrow X_{v_i})$$

$$= I(X_{v_1}, \ldots, X_{v_n}).$$

\[\star\]

Information flows from common causes. Now we come back to Reichenbach’s common cause principle and its quantitative extension. Theorem 3 is not directly applicable to this end, because it relates stochastic dependence only to local information flows, whereas flows from common causes, for instance, are in general non-local and originating from farther regions of the network. On the other hand, Theorem 3 can be applied to a kind of “coarse-grained” Bayesian network explicitly defined in the proof of Theorem 4 (see the appendix), in order to obtain a quantitative refinement of the common cause principle in terms of information flows. This refinement is the content of Theorem 4 and its Corollary 1. The formulation of these results requires some definitions which I introduce, for didactical reasons, in three steps.

Step 1: Given a Bayesian network $\mathfrak{B} = (V, E, k)$ and distinct nodes $v_1, \ldots, v_n \in V$, consider the map

$$\varphi : V \rightarrow 2^{\{1, \ldots, n\}}, \quad v \mapsto \varphi(v) := \{ j \in \{1, \ldots, n\} : v \sim v_j \},$$

where $2^{\{1, \ldots, n\}}$ denotes the power set of $\{1, \ldots, n\}$. The φ-preimage of an element $S \in 2^{\{1, \ldots, n\}}$, which we denote by α_S, coincides with the set of nodes $v \in V$ that satisfy $v \sim v_j$ if and only if
\(i \in S, \) that is

\[
\alpha_S = \left(\bigcap_{i \in S} \operatorname{an}(v_i) \right) \cap \left(\bigcap_{i \in \{1, \ldots, n\} \setminus S} (V \setminus \operatorname{an}(v_i)) \right).
\]

We consider the set \(\mathcal{V} := \{S \subseteq \{1, \ldots, n\} : \alpha_S \neq \emptyset\} \). Note that the cardinality of \(\mathcal{V} \) is upper bounded by the cardinality of \(V \). The \(\alpha_S, S \in \mathcal{V} \), are the atoms of a partition of \(V \), and we have

\[
\operatorname{an}(v_i) = \bigcup_{S \in \mathcal{V}} \alpha_S.
\]

Step 2: Based on the decomposition (22) of the ancestral set \(\operatorname{an}(v_i) \) into atoms we consider the following bipartition into a pair of disjoint sets:

\[
A_i := \bigcup_{S \subseteq V, S \ni \operatorname{var}(v_i)} \alpha_S \quad \text{and} \quad B_i := \alpha_{\operatorname{var}(v_i)} = \operatorname{an}(v_i) \setminus A_i.
\]

In other words, the set \(B_i \) is defined to be the atom that contains \(v_i \), and \(A_i \) is the complement of \(B_i \) in \(\operatorname{an}(v_i) \). Obviously,

\[
v_i \in B_j \iff i = j.
\]

Otherwise one would have the contradiction that two distinct nodes \(v_i \) and \(v_j \) satisfy \(v_i \leadsto v_j \) and \(v_j \leadsto v_i \). We will see in the appendix that \(A_i \) has the following explicit representation which directly implies that \(A_i \) is an ancestral set:

\[
A_i = \{v \in V : v \leadsto v_i \text{ and there exists } j \neq i \text{ satisfying } v_i \not\leadsto v_j \text{ and } v \leadsto v_j\}.
\]

Note that in the case of \(v_i \not\leadsto v_j \) for all \(i \neq j \) the individual intersections \(A_i \cap A_j, i \neq j \), consist of the common causes of \(v_i \) and \(v_j \). This interesting special case is considered in Corollary 1.

Step 3: Theorem 4 provides an upper bound of the multi-information in terms of information flows from the \(A_i \)'s to the \(B_i \)'s. These flow values do not change if we replace the cause and effect sets by smaller sets \(\partial_i^- \) and \(\partial_i^+ \) at the “boundary” between \(A_i \) and \(B_i \) as illustrated in Figure 7.
In order to define the sets ∂^-_i and ∂^+_i, we need the notion of the so-called Markov blanket of a node v (see [Cowell et al., 1999], page 71). It consists of the parents, the children, and the children’s parents of v:

$$\text{bl}(v) := \text{pa}(v) \cup \text{ch}(v) \cup \{ w \in V : \text{ch}(w) \cap \text{ch}(v) \neq \emptyset \}.$$

A Markov blanket of a set A is defined as

$$\text{bl}(A) := \bigcup_{v \in A} (\text{bl}(v) \setminus A).$$

We apply this definition to the sets A_i and B_i with respect to the subgraph G_{a_i} induced by the ancestral set $a_i := \text{an}(v_i)$, that is $G_{a_i} = (a_i, E \cap (a_i \times a_i))$:

(26) \hspace{1cm} $\partial^-_i := \text{bl}(B_i)$ \hspace{1cm} and \hspace{1cm} $\partial^+_i := \text{bl}(A_i)$.

The fact that A_i is an ancestral set implies that there is no edge starting in B_i and ending in A_i. Therefore we have

(27) \hspace{1cm} $\partial^-_i = \{ v \in A_i : \text{ch}(v) \cap B_i \neq \emptyset \}$ \hspace{1cm} and \hspace{1cm} (28) \hspace{1cm} $\partial^+_i = \{ w \in B_i : \text{pa}(w) \cap A_i \neq \emptyset, \text{ or there exists } v \in A_i \text{ with } \text{ch}(v) \cap \text{ch}(w) \neq \emptyset \}.$

In order to have a better intuitive understanding of the Steps 1-3, we apply the corresponding definitions to the following simple and very special example.

Example 4. Consider the nodes $v_1 = 8$, $v_2 = 11$, and $v_3 = 14$ of the following tree:

![Figure 8](image_url)

The subtree that is emphasized in Figure 8 by solid lines and dots, is given by the ancestral node set $\text{an}((8, 11, 14))$, which is the union of

$\text{an}(8) = \{1, 2, 4, 8\}, \hspace{1cm} \text{an}(11) = \{1, 2, 5, 11\}, \hspace{1cm} \text{and} \hspace{1cm} \text{an}(14) = \{1, 3, 7, 14\}.$
These ancestral sets generate a partition of the node set consisting of the following atoms (see representation (21)):

\[
\alpha_0 = \{6, 9, 10, 12, 13, 15\}, \quad \alpha_{(1,2)} = \{2\}, \quad \alpha_{(1,2,3)} = \{1\}, \\
\alpha_{(1)} = \{4, 8\}, \quad \alpha_{(2)} = \{5, 11\}, \quad \alpha_{(3)} = \{3, 7, 14\}.
\]

Now we divide each ancestral set \(\alpha_i(v_i)\) into a disjoint cause-effect pair \(A_i\) and \(B_i\). The effect set \(B_i\) is given by the atom that contains \(v_i\), and the cause set \(A_i\) is simply the complement of \(B_i\) in the ancestral set of \(v_i\). From Figure 8 we can easily read off

\[
A_1 = \{1, 2\}, \quad B_1 = \{4, 8\}, \quad A_2 = \{1, 2\}, \quad B_2 = \{5, 11\}, \quad \text{and} \quad A_3 = \{1\}, \quad B_3 = \{3, 7, 14\}.
\]

Replacing each \(A_i\) by the smaller cause set \(\partial_i^- \subseteq A_i\) and each \(B_i\) by the smaller effect set \(\partial_i^+ \subseteq B_i\) (see definitions (27) and (28)) we obtain

\[
\partial_1^- = \{2\}, \quad \partial_1^+ = \{4\}, \quad \partial_2^- = \{2\}, \quad \partial_2^+ = \{5\}, \quad \text{and} \quad \partial_3^- = \{1\}, \quad \partial_3^+ = \{3\}.
\]

We are now ready for the quantitative refinement of the common cause principle in terms of information flows.

Theorem 4. Let \(\mathfrak{B} = (V, E, k)\) be a Bayesian network, and let \(v_1, \ldots, v_n\) be distinct elements of \(V\). Then for all \(i\) we have

\[
IF(X_{A_i} \rightarrow X_{B_i}) = I(X_{A_i} : X_{B_i}) = I(X_{\partial_i^-} : X_{\partial_i^+}) = IF(X_{\partial_i^-} \rightarrow X_{\partial_i^+}),
\]

and the following inequalities hold:

\[
I(X_{v_1}, \ldots, X_{v_n}) \leq I(X_{B_1}, \ldots, X_{B_n})
\]

\[
\leq \max_{j \in \{1, \ldots, n\}} \sum_{i=1}^{n} IF(X_{A_i} \rightarrow X_{B_i}) \leq \sum_{i=1}^{n} IF(X_{A_i} \rightarrow X_{B_i}).
\]

Note that the left-hand side of (30) is a function of the (observed) joint distribution and does not explicitly depend on the network structure, whereas the computation of the individual information flow terms of both sums of (31) does require explicit knowledge about the network structure.

In the case where the observed nodes \(v_1, \ldots, v_n\) do not influence each other, that is \(v_i \not\sim v_j\) for all \(i \neq j\), one has

\[
A_i = \{v \in V : v \sim v_i \text{ and there exists } j \neq i \text{ satisfying } v \sim v_j\} = \bigcup_{j \neq i} (A_i \cap A_j).
\]

Here, as stated directly after equation (25), the intersections \(A_i \cap A_j\), \(i \neq j\), consist of the common causes of \(v_i\) and \(v_j\). Therefore, in this case, the application of Theorem 4 provides an upper bound of the multi-information of the observed nodes in terms of information flows from their common causes.

Corollary 1. If, in the situation of Theorem 4, \(v_i \not\sim v_j\) holds for all \(i \neq j\), then

\[
IF(X_{A_i} \rightarrow X_{v_i}) = I(X_{A_i} : X_{v_i}) = I(X_{\partial_i^-} : X_{v_i}) = IF(X_{\partial_i^-} \rightarrow X_{v_i}),
\]
A REFINEMENT OF THE COMMON CAUSE PRINCIPLE

(33) \[I(X_{v_1}, \ldots, X_{v_n}) \leq \max_{j \in \{1, \ldots, n\}} \sum_{i=1 \atop i \neq j}^{n} IF(X_{A_i} \rightarrow X_{v_i}) \leq \sum_{i=1}^{n} IF(X_{A_i} \rightarrow X_{v_i}). \]

Obviously, in the situation of Corollary 1, the inequalities (33) are sharper than the corresponding inequalities (31). On the other hand, it is important to keep in mind that, in contrast to the situation of Theorem 4, not only the individual information flow terms of the inequalities (33) but even the applicability of these inequalities requires some knowledge about the network structure, namely that \(v_i \not\rightarrow v_j \) for all \(i \neq j \). In other words, if we do not know anything about the underlying network we can not say whether (33) is true, whereas the validity of (31) is guaranteed without structural knowledge although the computation of the individual information flow terms does require such knowledge. This constitutes the conceptual difference between Theorem 4 and Corollary 1.

Examples 5.

(1) Data processing inequality. Consider the simple DAG shown in Figure 9.

![Figure 9](image_url)

If we observe the first node \(v_1 = 1 \) and third node \(v_2 = 3 \), we have

\[
\begin{align*}
A_1 &= \emptyset, \ B_1 = \{1\}, \ \ \ \ \ \ \ \ \ \partial_1^- = \emptyset, \ \ \ \ \ \ \ \ \ \partial_1^+ = \emptyset, \\
A_2 &= \{1\}, \ B_2 = \{2, 3\}, \ \ \ \ \partial_2^- = \{1\}, \ \ \ \partial_2^+ = \{2\}.
\end{align*}
\]

Then (29) and (31) imply the inequality

\[I(X_1 : X_3) \leq IF(X_1 \rightarrow X_2) = I(X_1 : X_2). \]

This is well known as data processing inequality (Theorem 2.8.1 of [Cover & Thomas, 1991]).

(2) Example 4 continued. Here we continue Example 4 by applying Theorem 4. The second inequality of (31) implies

\[I(X_8, X_{11}, X_{14}) \leq IF(X_{1,2} \rightarrow X_{4,8}) + IF(X_{1,2} \rightarrow X_{5,11}) + IF(X_1 \rightarrow X_{3,7,14}). \]

According to (29), we can remove some of the cause and effect nodes without changing the information flows on the right hand side of (34):

\[I(X_8, X_{11}, X_{14}) \leq IF(X_2 \rightarrow X_4) + IF(X_2 \rightarrow X_5) + IF(X_1 \rightarrow X_3). \]

The additional structural knowledge that there are no edges between the nodes 8, 11, and 14, allows us to apply Corollary 1 and thereby further sharpen the upper bound of the multi-information:

\[I(X_8, X_{11}, X_{14}) \leq IF(X_2 \rightarrow X_8) + IF(X_2 \rightarrow X_{11}) + IF(X_1 \rightarrow X_{14}). \]

This is a refinement of the estimate (35).

(3) More “entangled” causal relations. This example illustrates how Theorem 4 works in situations where the causal relations of the nodes are more “entangled” than those of the tree in Example 4. Consider the DAG shown in Figure 10. We assume that we observe \(v_1 = 3, v_2 = 9, v_3 = 11, \) and \(v_4 = 18 \) (these nodes are emphasized by bigger dots). The corresponding ancestral sets \(\text{an}(v_i), i = 1, 2, 3, 4 \), are encircled by individual closed lines.
From Figure 10 we can directly read off the individual cause-effect sets of Theorem 4:

\[A_1 = \{1\}, \quad B_1 = \{3\}, \quad \partial_1^- = \{1\}, \quad \partial_1^+ = \{3\}, \]
\[A_2 = \{1, 2, 3, 4, 5, 7\}, \quad B_2 = \{8, 9\}, \quad \partial_2^- = \{4, 5, 7\}, \quad \partial_2^+ = \{8, 9\}, \]
\[A_3 = \{1, 2, 3, 4, 10\}, \quad B_3 = \{6, 11\}, \quad \partial_3^- = \{3, 4, 10\}, \quad \partial_3^+ = \{6, 11\}, \]
\[A_4 = \{1, 2, 5, 7, 10\}, \quad B_4 = \{12, 13, 14, 15, 16, 17, 18\}, \quad \partial_4^- = \{7, 10\}, \quad \partial_4^+ = \{12, 13, 14\}. \]

Using the reduced sets \(\partial_i^- \) and \(\partial_i^+ \), Theorem 4 implies

\[
I(X_3, X_9, X_{11}, X_{18}) \leq IF(X_1 \rightarrow X_3) + IF(X_{\{4,5,7\}} \rightarrow X_{\{8,9\}}) \\
+ IF(X_{\{3,4,10\}} \rightarrow X_{\{6,11\}}) + IF(X_{\{7,10\}} \rightarrow X_{\{12,13,14\}}).
\]

In Section 3 we have seen that the inequality (12) implies the common cause principle (Theorem 1). As a concluding remark I apply the first estimate of (31) to two nodes \(v_1 \) and \(v_2 \) and thereby identify it as a refinement of (12) in the case where \(A \) and \(B \) have cardinality one. With \(a := \text{an}(v_1) \) and \(b := \text{an}(v_2) \) there are three qualitatively different cases that determine the sets \(A_i \) and \(B_i \) used in Theorem 4:

<table>
<thead>
<tr>
<th></th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(B_1)</th>
<th>(B_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>case 1:</td>
<td>(v_1 \in a \setminus b, \ v_2 \in b \setminus a)</td>
<td>(\emptyset)</td>
<td>(a \cap b)</td>
<td>(a \cap b)</td>
</tr>
<tr>
<td>case 2:</td>
<td>(v_1 \in a \setminus b, \ v_2 \in a \cap b)</td>
<td>(\emptyset)</td>
<td>(a \setminus b)</td>
<td>(a \cap b)</td>
</tr>
<tr>
<td>case 3:</td>
<td>(v_1 \in a \cap b, \ v_2 \in b \setminus a)</td>
<td>(\emptyset)</td>
<td>(a \cap b)</td>
<td>(a \cap b)</td>
</tr>
</tbody>
</table>
Straightforward application of Theorem 4 gives us the following inequality (37):

\[
I(X_{v_1} : X_{v_2}) \leq \begin{cases}
\max \{ IF(X_{a \cap b} \rightarrow X_{a \setminus b}), IF(X_{a \cap b} \rightarrow X_{b \setminus a}) \}, & \text{in case 1} \\
IF(X_{a \cap b} \rightarrow X_{a \setminus b}), & \text{in case 2} \\
IF(X_{a \cap b} \rightarrow X_{b \setminus a}), & \text{in case 3}
\end{cases}
\]

(37) \[\leq \max \{ IF(X_{a \cap b} \rightarrow X_{a \setminus b}), IF(X_{a \cap b} \rightarrow X_{b \setminus a}) \} \]

(38) \[= \max \{ I(X_{a \cap b} : X_{a \setminus b}), I(X_{a \cap b} : X_{b \setminus a}) \} \quad \text{(Examples 2 (2))} \]

As we see, (37) and (38) are refinements of the previous estimate (12) in the case where \(A \) and \(B \) are sets of size one. In particular, they also imply the common cause principle of Theorem 1 in that case.

6. Appendix

Structural equation model and intervention. In Section 2 we used Bayesian networks as a formal description of causal interactions. Although it turns out that this is a sufficient model for understanding causal effects, for some scientists, including Pearl, it appears more intuitive to assume a deterministic nature of functional mechanisms. Following Pearl, the mechanisms of the nodes \(v \in V \) are described by distributions (disturbances) \(d_v \) on sets \(U_v \), and deterministic maps \(f_v : X_{pa(v)} \times U_v \rightarrow X_v \). The corresponding equations

\[
x_v = f_v(x_{pa(v)}, u_v), \quad v \in V,
\]

are called structural equations [Wright, 1921, Goldberger, 1973]. The disturbances are assumed to be mutually independent. A DAG \(G = (V, E) \) together with a family of disturbances \(d_v \) and maps \(f_v, v \in V \), is called a causal model. A causal model \(C \) defines the following joint distribution on \(X_V \times U_V \):

\[
p(C; x, u) = \prod_{v \in V} d_v(u_v) \delta_{f_v(x_{pa(v)}, u_v)}(x_v), \quad x \in X_V, u \in U_V.
\]

If we take the marginal of that distribution, we obtain a distribution on \(X_V \):

\[
p(C; x) = \sum_u p(C; x, u)
\]

\[
= \sum_u \prod_{v \in V} d_v(u_v) \delta_{f_v(x_{pa(v)}, u_v)}(x_v)
\]

\[
= \prod_{v \in V} \left(\sum_{u_v} d_v(u_v) \delta_{f_v(x_{pa(v)}, u_v)}(x_v) \right)
\]

\[
= \prod_{v \in V} k^v(x_{pa(v)}; x_v),
\]

with

\[
k^v(x_{pa(v)}; x_v) := \sum_{u_v} d_v(u_v) \delta_{f_v(x_{pa(v)}, u_v)}(x_v).
\]

These are exactly the kernels that we already considered in Bayesian networks.
In order to describe interventions in a causal model we split the node set \(V \) into a subset \(A \) of nodes that are intervened and the subset \(D := V \setminus A \) of remaining nodes which are observed. Let \(x_A' \) be a configuration on \(A \). Setting \(X_A \) to \(x_A' \) means replacing all mechanisms \(f_v, v \in A \), by constants. Then we have to replace the structural equations \(^{39}\) as follows:

\[
x_v = f_v(x_{pa(v) \setminus A}, x_A, u_v), \quad v \in V \setminus A,
\]

\[
x_v = x'_A, \quad v \in A.
\]

This gives the new causal model \(\hat{\mathcal{C}} \) where the maps \(f_v \) are replaced by the new maps \(\hat{f}_v := x'_v \) if \(v \in A \), and \(\hat{f}_v := f_v \) if \(v \notin A \). This new causal model defines the following joint distribution which is a modification of \(^{40}\):

\[
p(\hat{\mathcal{C}}; x, u) := \prod_{v \in A} d_v(u_v) \delta_{x'_A}(x_v) \prod_{v \in V \setminus A} d_v(u_v) \delta_{f_v(x_{pa(v) \setminus A}, x_A', x_{pa(v) \cap A}, u_v)}(x_v).
\]

This implies

\[
p(\hat{\mathcal{C}}; x_A, x_D) = \sum_u p(\hat{\mathcal{C}}; x_A, x_D, u)
\]

\[
= \sum_u \prod_{v \in A} d_v(u_v) \delta_{x'_A}(x_v) \prod_{v \in V \setminus A} d_v(u_v) \delta_{f_v(x_{pa(v) \setminus A}, x_A', x_{pa(v) \cap A}, u_v)}(x_v)
\]

\[
= \left(\prod_{v \in A} \sum_{u_v} d_v(u_v) \delta_{x'_A}(x_v) \right) \left(\prod_{v \in V \setminus A} \sum_{u_v} d_v(u_v) \delta_{f_v(x_{pa(v) \setminus A}, x_A', x_{pa(v) \cap A}, u_v)}(x_v) \right)
\]

\[
= \delta_{x'_A}(x_A) \prod_{v \in V \setminus A} k^v(x_{pa(v) \setminus A}, x_A', x_{pa(v) \cap A}; x_v).
\]

Summation over all \(x_A \in \mathcal{X}_A \) finally gives us

\[
p(x_D \| x_A') := \sum_{x_A} p(\hat{\mathcal{C}}; x_A, x_D)
\]

\[
= \prod_{v \in D} k^v(x_{pa(v) \setminus A}, x_A', x_{pa(v) \cap A}; x_v).
\]

We can rewrite this in the more transparent way by considering one global configuration \(x = (x_D, x_A) \) instead of \((x_D, x_A') \):

\[
(41) \quad p(x_D \| x_A) = \prod_{v \in D} k^v(x_{pa(v)}; x_v).
\]

This is exactly the truncated product \(^{7}\).

Proofs.

Proof of Theorem 2: We use the symbols

\[
C := an(A) \quad \text{and} \quad D := V \setminus C.
\]

The assumption that \(B \) is not a cause of \(A \) implies \(C \cap B = \emptyset \), and therefore \(B \subseteq D \). We prove the theorem in several steps.

Step 1: For the ancestral set \(C \) we have

\[
p(x_C) = \prod_{v \in C} k^v(x_{pa(v)}; x_v).
\]
If $p(x_C) > 0$ we get

\[
p(x_B\|x_C) = \sum_{x_{D\setminus B}} p(x_B, x_{D\setminus B}\|x_C) \\
= \sum_{x_{D\setminus B}} \prod_{v \in D} k^v(x_{pa(v)}; x_v) \\
= \sum_{x_{D\setminus B}} \prod_{v \in V} k^v(x_{pa(v)}; x_v) \\
= \sum_{x_{D\setminus B}} p(x_B, x_{D\setminus B}\|x_C) \\
= \sum_{x_{D\setminus B}} p(x_B, x_{D\setminus B}\|x_C) \\
= p(x_B\|x_C).
\]

Step 2: Within this step we are going to prove

\[
p(x_B\|x_C) = p(x_B\|x_A, x_{C\setminus A}) = p(x_B\|x_A).
\]

In order to do so, we define

\[
A' := \{v \in V : \text{there is a path from } C \setminus A \text{ to } v \text{ that does not meet } A\}, \quad B' := V \setminus A'.
\]

Clearly we have $C \setminus A \subseteq A'$ and $A \subseteq B'$. Furthermore, the assumption that there is no common cause of A and B also implies $B \subseteq B'$.

\[
p(x_B\|x_{C\setminus A}, x_A) = \sum_{x_{D\setminus B}} p(x_B, x_{D\setminus B}\|x_{C\setminus A}, x_A) \\
= \sum_{x_{D\setminus B}} \prod_{v \in D} k^v(x_{pa(v)}; x_v) \\
= \sum_{x_{A'\setminus C} x_{B'\setminus (A \cup B)}} \prod_{v \in A'\setminus C} k^v(x_{pa(v)}; x_v) \prod_{v \in B'\setminus A} k^v(x_{pa(v)}; x_v) \\
= \sum_{x_{B'\setminus (A \cup B)}} \prod_{v \in B'\setminus A} k^v(x_{pa(v)}; x_v) \sum_{x_{A'\setminus C} x_{B'\setminus (A \cup B)}} \prod_{v \in A'\setminus C} k^v(x_{pa(v)}; x_v) \\
= \sum_{x_{B'\setminus (A \cup B)}} \prod_{v \in B'\setminus A} k^v(x_{pa(v)}; x_v) \sum_{x_{A'\setminus C} x_{B'\setminus (A \cup B)}} \prod_{v \in A'\setminus C} k^v(x_{pa(v)}; x_v) \\
= \sum_{x_{A'}} \prod_{x_{B'\setminus (A \cup B)}} p(x_{A'}, x_{B'\setminus (B \cup A)}, x_B\|x_A) \\
= p(x_B\|x_A).
\]
Finally, we introduce a new symbol $\tilde{A}_i := \{v \in V : v \sim v_i \text{ and there exists } j \neq i \text{ satisfying } v_i \not\sim v_j \text{ and } v \sim v_j\}$.
for the right-hand side of (25) and have to prove (see first definition of (23))

$$\bigcup_{S \in \mathcal{V}} \alpha_S = \tilde{A}_i.$$

"≤": We assume that there is an $R \in \mathcal{V}$ with $R \supseteq \varphi(v_i)$ and $v \in \alpha_R$. From $i \in \varphi(v_i)$ we get $i \in R$, and, furthermore, there is a $j \in R \setminus \varphi(v_i)$. This directly implies $v \sim v_i$, $v_i \not\sim v_j$, and $v \sim v_j$.

"≥": Assume $v \in \tilde{A}_i$. It is sufficient to verify $\varphi(v) \supseteq \varphi(v_i)$: $k \in \varphi(v_i)$ implies $v_i \sim v_k$ and, with $v \sim v_i$ ($v \in \tilde{A}_i$), this implies $v \sim v_k$. Therefore, we have $k \in \varphi(v)$. Now we choose a j with $v_i \not\sim v_j$ and $v \sim v_j$ (such a j exists because $v \in \tilde{A}_i$). This is equivalent to $j \in \varphi(v)$ and $j \notin \varphi(v_i)$.

Proof of Theorem 4:
Proof of equality chain (29): It is easy to verify that X_{B_i} is conditionally independent of $X_{A_i \setminus \partial_i^-}$ given $X_{\partial_i^-}$, and that $X_{B_i \setminus \partial_i^+}$ is conditionally independent of X_{A_i} given $X_{\partial_i^+}$ (graph separation criteria for conditional independence, see Section 3.2.2 of [Lauritzen, 1996], or Section 5.3 of [Cowell et al., 1999]):

$$X_{B_i} \perp \!\!\!\perp X_{{A_i \setminus \partial_i^-} \cup \partial_i^+} \qquad \text{and} \qquad X_{B_i \setminus \partial_i^+} \perp \!\!\!\perp X_{{A_i} \setminus \partial_i^-}.$$

This implies

$$IF(X_{A_i} \rightarrow X_{B_i}) = I(X_{A_i} : X_{B_i}) = H(X_{B_i}) - H(X_{B_i} | X_{\partial_i^-}, X_{A_i \setminus \partial_i^-})$$

$$= H(X_{B_i}) - H(X_{B_i} | X_{\partial_i^-}) \quad \text{(first conditional independence of (42))}$$

$$= H(X_{\partial_i^-}) - H(X_{\partial_i^-} | X_{\partial_i^+}, X_{B_i \setminus \partial_i^+}) \quad \text{(symmetry of mutual information)}$$

$$= H(X_{\partial_i^-}) - H(X_{\partial_i^-} | X_{\partial_i^+}) \quad \text{(second conditional independence of (42))}$$

$$= I(X_{\partial_i^-} : X_{\partial_i^+})$$

$$= IF(X_{\partial_i^-} \rightarrow X_{\partial_i^+}). \quad \text{(Theorem 2)}$$

Proof of the inequalities (30) and (31):
The inequality (30) directly follows from $v_i \in B_i$ for all i. We are going to prove the inequality (31) in several steps. Based on the given Bayesian network, we define a new one by "coarse-graining" and then apply Theorem 3.

Step 1: We consider the set $\mathcal{V} = \{S \subseteq \{1, \ldots, n\} : \alpha_S \neq \emptyset\}$ as node set of a new graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}')$ where two nodes $R, S \in \mathcal{V}$ are connected if there exist $v \in \alpha_R$ and $w \in \alpha_S$ with $(v, w) \in E$, that is

$$\mathcal{E}' := \{(R, S) \in \mathcal{V} \times \mathcal{V} : \text{there is a pair } (v, w) \in E \text{ with } v \in \alpha_R \text{ and } w \in \alpha_S\}.$$

This graph is acyclic because $(R, S) \in \mathcal{E}'$ always implies $S \subseteq R$. Assume that there exists $i \in S \setminus R$. With $(R, S) \in \mathcal{E}$ there are nodes $v \in \alpha_R$, $w \in \alpha_S$ with $(v, w) \in E$. According to the definition of the sets α_R and α_S these nodes satisfy $v \not\sim v_i$ and $w \sim v_i$. On the other hand, $(v, w) \in E$ then implies the contradiction $v \sim v_i$.

In order to avoid technicalities, we modify the graph $(\mathcal{V}, \mathcal{E}')$ by adding all pairs $(R, S) \in \mathcal{V} \times \mathcal{V}$ to the edge set \mathcal{E}' if they satisfy $R \supseteq S$. This way, we obtain a graph with extended edge set \mathcal{E} satisfying $pa(S) = \{R \in \mathcal{V} : R \supseteq S\}$ for all $S \in \mathcal{V}$.

Step 2: For all nodes $S \in \mathcal{V}$ we consider the state set

$$X_S := X_{\alpha_S} = \times_{v \in \alpha_S} X_v$$
by using the original state sets $X_v, v \in V$. We have the natural identification
\[X_V \rightarrow \bar{X}_V, \quad x = (x_v)_{v \in V} \mapsto \bar{x} := (x_{\alpha_S})_{S \in \mathcal{V}}, \]
and every probability distribution p on X_V can naturally be considered as probability distribution \tilde{p} on \bar{X}_V defined by $\tilde{p}(\bar{x}) := p(x)$. Given a recursive factorization
\[p(x) = \prod_{v \in V} k^v(x_{\text{pa}(v)}; x_v), \]
we define new kernels k^S as “groups” of the kernels k^v:
\[k^S(\bar{x}_{\text{pa}(S)}; \bar{x}_S) := \prod_{v \in \alpha_S} k^v(x_{\text{pa}(v)}; x_v). \]
This obviously provides a recursive factorization of \tilde{p} according to the new graph $(\mathcal{V}, \mathcal{E})$:
\[\tilde{p}(\bar{x}) = p(x) = \prod_{v \in V} k^v(x_{\text{pa}(v)}; x_v) = \prod_{S \in \mathcal{V}} \left(\prod_{v \in \alpha_S} k^v(x_{\text{pa}(v)}; x_v) \right) = \prod_{S \in \mathcal{V}} k^S(\bar{x}_{\text{pa}(S)}; \bar{x}_S). \]
This graph $(\mathcal{V}, \mathcal{E})$, together with the kernels k^S, defines a Bayesian network which we denote by $\tilde{\mathcal{B}}$.

Step 3: Finally we apply Theorem 3 to the Bayesian network $\tilde{\mathcal{B}}$ in order to obtain (31):
\[
I_p(X_{v_1}, \ldots, X_{v_n}) \leq I_p(X_{B_1}, \ldots, X_{B_n}) = I_p(X_{\varphi(v_1)}, \ldots, X_{\varphi(v_n)}) \quad \text{(inequality (30))}
= \max_{j \in \{1, \ldots, n\}} \sum_{i \neq j} \frac{\text{I}_{\mathcal{B}}(X_{\varphi(v_i)} \rightarrow X_{\varphi(v_j)})}{n}
\leq \max_{j \in \{1, \ldots, n\}} \sum_{i \neq j} \text{I}_{\mathcal{B}}(X_{A_i} \rightarrow X_{B_i}) \quad \text{(Theorem 3)}
= \max_{j \in \{1, \ldots, n\}} \sum_{i \neq j} \frac{\text{I}_{\mathcal{B}}(X_{A_i} \rightarrow X_{B_i})}{n} \quad \text{(Steps 1 and 2)}
\]

Proof of Corollary 1: The equality chain (32) follows directly from the fact that A_i is an ancestral set (see Examples 2 (2)), and from the conditional independence of X_{v_i} and $X_{A_i \setminus \partial_i}$ given X_{∂_i} which is stated in (42). In order to prove the inequality (33) we slightly modify the Bayesian network $\mathcal{B} = (V, E, k)$ and then apply the corresponding inequality (31).

Step 1: With $A := \bigcup_{i=1}^n A_i$ we define a new graph $\bar{G} := (\bar{V}, \bar{E})$ by
\[
\bar{V} := A \cup \{v_1, \ldots, v_n\}, \quad \bar{E} := \left(E \cap (A \times A) \right) \cup \bigcup_{i=1}^n (\partial_i^{-} \times \{v_i\}).
\]
Obviously, the parents of a node v_i with respect to this graph \bar{G} are given by the set ∂_i^{-}. Denoting the A_i’s and B_i’s that are defined with respect to \bar{G} by \bar{A}_i and \bar{B}_i we have
\[\bar{A}_i = A_i \quad \text{and} \quad \bar{B}_i = \{v_i\}. \]

Step 2: In order to define the new Bayesian network $\tilde{\mathcal{B}}$, we assign to each node $v_i, i = 1, \ldots, n$, a kernel \tilde{k}^{v_i} from $X_{\partial_i^{-}}$ to X_{v_i} given by
\[\tilde{k}^{v_i}(x_{\partial_i^{-}}; x_{v_i}) := \sum_{x_{B_i \setminus \{v_i\}}} \prod_{v \in B_i} k^v(x_{\text{pa}(v)}; x_v). \]
The other k^v's where v is an element of A remain unchanged. Obviously, the causal effects of the A_i's on the v_i's remain the same, and we have

\[(45)\]

\[
IF(B; A_i \rightarrow v_i) = IF(B; A_i \rightarrow v_j).
\]

Furthermore, the assumption that $v_i \not\rightarrow v_j$ if $i \neq j$ ensures that the joint probability distribution $p(\bar{B})$ coincides with the \bar{V}-marginal of $p(\bar{B})$, that is

\[(46)\]

\[
p(\bar{B}; \bar{V}) = \sum_{x_V \setminus \bar{V}} p(\bar{B}; x_V, x_V \setminus \bar{V}).
\]

Step 3: Finally, we prove the inequality (33):

\[
I_p(X_{v_1}, \ldots, X_{v_n}) = I_p(X_{v_1}, \ldots, X_{v_n}) \quad \text{(equation (46))}
\]

\[
\leq \max_{j \in \{1, \ldots, n\}} \sum_{i=1}^{n} IF(B; A_i \rightarrow X_{v_i}) \quad \text{(inequality (31) of Theorem 4)}
\]

\[
= \max_{j \in \{1, \ldots, n\}} \sum_{i=1}^{n} IF(B; A_i \rightarrow X_{v_i}) \quad \text{(equations (44) and (45))}
\]

Acknowledgments

I sincerely thank Daniel Polani for his comments and suggestions which were not only extremely helpful but in many respects crucial and thereby greatly improved this paper. I am also grateful for many stimulating discussions with Shun-ichi Amari, Nils Bertschinger, Jürgen Jost, David Krakauer, Eckehard Olbrich, and Bastian Steudel and for the referees’ professional work. Furthermore, I would like to thank the Brain Science Institute at RIKEN for hosting me during the initial work on this paper and the Santa Fe Institute for supporting me as an external professor.

References

E-mail address: nay@mis.mpg.de