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1. The Physics of Information

Why cannot we write the entire 24 volumes of the Encyclopedia Brittanica on

the head of a pin?

R.P. Feynman

Information is carried, stored, retrieved and processed by machines, whether
they be electronic computers or living organisms. All information, which in an
abstract sense one may think of as a string of zeros and ones, has to be carried by a
physical substrate, be it paper, silicon chips or holograms, and the handling of this
information is physical, so information is ultimately constrained by the fundamental
laws of physics. It is therefore not surprising that physics and information share a
rich interface.

The notion of information as used by Shannon is a generalization of the notion
of entropy, which first appeared in thermodynamics. In thermodynamics entropy
is an abstract quantity depending on heat and temperature whose interpretation is
not obvious. This changed with the theory of statistical mechanics, which explains
and generalizes thermodynamics. Statistical mechanics exploits a decomposition
of a system into microscopic units such as atoms to explain macroscopic phenom-
ena such as temperature and pressure in terms of the statistical properties of the
microscopic units. Statistical mechanics makes it clear that entropy can be re-
garded as a measure of microscopic disorder. The entropy S can be written as
S = −

∑
pi log pi, where pi is the probability of a particular microscopic state, for

example the likelihood that a given atom will have its velocity and position within
a given range.

Shannon realized that entropy is useful to describe disorder in much more gen-
eral settings, which might have nothing to do with atoms or physics. The entropy
of a probability distribution {pi} is well defined as long as pi is well defined. In this
more general context he argued that measuring order and measuring disorder are
essentially the same – in a situation that is highly disordered, making a measure-
ment gives a great deal of information, and conversely, in a situation that is highly
ordered, making a measurement gives little information. Thus for a system that can
randomly be in one of several different states the entropy of its distribution is the
same as the information gained by knowing which state i it is in. It turns out that
the concept of entropy or equivalently information is useful in many applications
that have nothing to do with physics.
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It also turns out that thinking in these more general terms is useful for physics.
For example, Shannon’s work makes it clear that entropy is in some sense more
fundamental than the quantities from which it was originally derived. This led
Jaynes to formulate all of statistical mechanics as a problem of maximizing entropy.
In fact, all of science can be viewed as an application of the principle of maximum
entropy, which provides a means of quantifying the tradeoff between simplicity and
accuracy of description. If we want to understand how physical systems can be
used to perform computations, or construct computer memories, it can be useful
to define entropies that may not correspond to thermodynamic entropy. But if
we want to understand the limits to computation it is very useful to think in
thermodynamic or statistical terms. This has become particularly important in
efforts to understand how to take advantage of quantum mechanics to improve
computation. These considerations have given rise to a subfield of physics that is
often called the physics of information.

In this chapter we attempt to explain to a non-physicist where the idea of infor-
mation came from. We begin by describing the origin of the concept of entropy in
thermodynamics, where entropy is just a macroscopic state variable related to heat
flow and temperature, a rather mathematical device without a concrete physical
interpretation. We then discuss how the microscopic theory of atoms led to sta-
tistical mechanics, which makes it possible to derive and extend thermodynamics.
This led to the definition of entropy in terms of probabilities on the set of accessible
microscopic states of a system and provided the inspiration for modern information
theory starting with the seminal work of Shannon [55]. A close examination of the
foundations of statistical mechanics and the need to reconcile the probabilistic and
deterministic views of the world leads us to a discussion of chaotic dynamics, where
information plays a crucial role in quantifying predictability. We then discuss a va-
riety of fundamental issues that emerge in defining information and how one must
exercise care in discussing concepts such as order, disorder, and incomplete knowl-
edge. We also discuss an alternative form of entropy and its possible relevance for
nonequilibrium thermodynamics.

Toward the end of the chapter we discuss how quantum mechanics gives rise
to the concept of quantum information. Entirely new possibilities for information
storage and computation are possible due to the massive parallel processing inherent
in quantum mechanics. We also point out how entropy can be extended to apply to
quantum mechanics to provide a useful measurement for quantum entanglement.
Finally we make a small excursion to the interface betweeen quantum theory and
general relativity, where one is confronted with the “ultimate information paradox”
posed by the physics of Black Holes. In this review we have limited ourselves; not
all relevant topics that touch on physics and information have been covered.

In our quest for more and more volume and speed in storing and processing
information we are naturally led to the smallest scales we can physically manipulate.
We began the introduction by quoting Feynman’s visionary 1959 lecture “Plenty of
room at the bottom” [21] where he discusses storing and manipulating information
on the atomic level. Currently commercially available processors work at scales of
60 nm (1 nm = 1 nanometer = 10−9 meter). In 2006, IBM announced circuitry on
a 30 nm scale, which indeed makes it possible to write the Encyclopedia Britannica
on the head of a pin, so Feynmann’s speculative remark in 1959 is now just a
marker of the current scale of computation. To make it clear how close this is to
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the atomic scale, a square with sides of length 30 nm contains about 1000 atoms.
Under the historical pattern of Moore’s law, integrated circuitry doubles in speed
as it decreases in size every 2 years. If we continue on the same trajectory of
improvement, within about 20 years the components will be the size of individual
atoms, and it is difficult to imagine that computers will be able to get any smaller.
Once this occurs information at the atomic scale will be directly connected to
our use of information on a macroscopic scale. There is a certain poetry to this:
Once a computer has components on a quantum scale, the motion of its atoms
will no longer be random, and in a certain sense will not be described by classical
statistical mechanics, at the same time that it will be used to process information
on a macroscopic scale.

2. Thermodynamics

The truth of the second law is, therefore, a statistical and not a mathematical

truth, for it depends on the fact that the bodies we deal with consist of millions

of molecules and that we never can get a hold of single molecules

J.C. Maxwell

Thermodynamics is the study of macroscopic physical systems1. These systems
contain a large number of degrees of freedom, typically of the order of Avogadro’s
number, i.e. NA ≈ 1023. The three laws of thermodynamics describe processes
in which systems exchange energy with each other or with their environment. For
example, the system may do work, or exchange heat or mass through a diffusive
process. A key idea is that of equilibrium, which in thermodynamics is the as-
sumption that the exchange of energy or mass between two systems is the same in
both directions; this is typically only achieved when two systems are left alone for
a long period of time. A process is quasistatic if it always remains close to equi-
librium, which also implies that it is reversible, i.e that the process can be undone
and the system can return to its original state without any external energy inputs.
We distinguish various types of processes, for example an isothermal process in
which the system is in thermal contact with a reservoir that keeps it at a fixed
temperature. Another example is an adiabatic process in which the system is kept
thermally isolated and the temperature is allowed to change. A system may also
go from one equilibrium state to another via a nonequilibrium process, such as the
free expansion of a gas or the mixing of two fluids, in which case it is not reversible.
No real system is fully reversible, but it is nonetheless a very useful concept.

The remarkable property of systems in equilibrium is that the macro states
can be characterized by only very few variables, such as the volume V , pressure P ,
temperature T , entropy S, chemical potential µ and particle number N . These state
variables are in general not independent, but rather are linked by an equation of
state, which describes the constraints imposed by physics. A familiar example is the
ideal gas law PV = NAkT , where k is the Boltzmann constant relating temperature
to energy (k = 1.4 × 10−23 joule/Kelvin). In general the state variables come in
pairs, one of which is intensive while the other conjugate variable is extensive.
Intensive variables like pressure or temperature are independent of system size,
while extenstive variables like volume and entropy are proportional to system size.

1Many details of this brief expose of selected items from thermodynamics and statistical me-
chanics can be found in standard textbooks on these subjects [52, 38, 31, 42].
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In this lightning review we will only highlight the essential features of thermo-
dynamics that are most relevant in connection with information theory.

2.1. The laws. The first law of thermodynamics reads2

dU = d̄Q− d̄W (2.1)

and amounts to the statement that heat is a form of energy and that energy is
conserved. More precisely, the change in internal energy dU equals the amount of
heat d̄Q absorbed by the system minus the work done by the system, d̄W .

The second law introduces the concept of entropy S, which is defined as the
ratio of heat flow to temperature. The law states that the entropy for a closed
system (with constant energy, volume and number of particles) can never decrease.
In mathematical terms

dS =
d̄Q

T
,

dS

dt
≥ 0. (2.2)

By using a gas as the canonical example, we can rewrite the first law in proper
differentials as

dU = TdS − PdV, (2.3)
where PdV is the work done by changing the volume of the container, for example
by compressing the gas with a piston. It follows from the relation between entropy,
heat and temperature that entropy differences can be measured by measuring the
temperature with a thermometer and the change in heat with a calorimeter. This
illustrates that from the point of view of thermodynamics entropy is a purely macro-
scopic quantity.

Q

Q2

1

Work

Cold reservoir

Hot reservoir

Engine

Q

Q2

1

Cold reservoir

Hot reservoir

Work Refrigerator

Figure 1. The relation between heat and work illustrating the
two formulations of the second law of thermodynamics. On the
left we have the Kelvin formulation. The ideal engine corresponds
to the diagram with the black arrows only. The second law tells us
that the third, grey arrow is necessarily there. The right picture
with only the black arrows corresponds to the ideal refrigerator,
and the third, grey arrow is again required by the second law.

2The bars through the differentials indicate that the quantities following them are not state
variables: the d-bars therefore refer to small quantities rather then proper differentials.
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There are two different formulations of the second law. The Kelvin formulation
states that it is impossible to have a machine whose sole effect is to convert heat
into work. We can use heat to do work, but to do so we must inevitably make other
alterations, e.g. letting heat flow from hot to cold and thereby bringing the system
closer to equilibrium. Clausius’ formulation says that it is impossible to have a
machine that only extracts heat from a reservoir at low temperature and delivers
that same amount of heat to a reservoir at higher temperature. Rephrasing these
formulations, Kelvin says that ideal engines cannot exist and Clausius says that
ideal refrigerators can’t exist. See figure 1.

The action of a heat engine or refrigerator machines can be pictured in a diagram
in which the reversible sequence of states the system goes through are a closed curve,
called a Carnot cycle. We give an example for the Kelvin formulation in figure 2.
Imagine a piston in a chamber; out goal is to use the temperature differential
between two reservoirs to do work. The cycle consists of four steps: In step a→ b,
isothermal expansion, the system absorbs an amount Q1 of heat from the reservoir
at high temperature T1, which causes the gas to expand and push on the piston,
doing work; In step b → c, adiabatic expansion, the gas continues to expand and
do work, but the chamber is detached from the reservoir, so that it no longer
absorbs any heat. Now as the gas expands it cools until it reaches temperature T2.
In step c → d, isothermal compression, the surroundings do work on the gas, as
heat flows into the cooler reservoir, giving off an amount Q2 of heat; and in step
d → a, adiabatic compression, the surroundings continue to do work, as the gas is
further compressed (without any heat transfer) and brought back up to the original
temperature. The net work done by the machine is given by the line integral:

W =
∮

cycle
PdV = enclosed area (2.4)

which by the first law should also be equal to W = Q1 − Q2 because the internal
energy is the same at the beginning and end of the cycle. We also can calculate the
total net change in entropy of the two reservoirs as

∆S =
−Q1

T1
+

Q2

T2
≥ 0 , (2.5)

where the last inequality has to hold because of the second law. Note that the two
latter equations can have solutions with positive W . The efficiency of the engine η
is by definition the ratio of the work done to the heat entering the system, or

η =
W

Q1
= 1− Q2

Q1
≤ 1− T1

T2
. (2.6)

This equals one for an ideal heat engine, but is less then one for a real engine.
A modern formulation of the second law, which in the setting of statistical me-

chanics is equivalent to the statements of Kelvin and Clausius, is the Landauer
principle, which says that there is no machine whose sole effect is the erasure of
information. There is a price to forgetting: The principle states that the erasure
of information (which is irreversible) is inevitably accompanied by the generation
of heat. In other words, logical irreversibility necessarily involves thermodynamical
irreversibility. One has to generate at least kT ln 2 to get rid of one bit of infor-
mation [39, 40]. We return to the Landauer principle in the section on Statistical
mechanics.
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a Q 1

Q 2

T1

Figure 2. The Carnot cycle corresponding to the Kelvin formu-
lation of the second law. The work done by the engine equals the
line integral along the closed contour and is therefore equal to the
enclosed area.

We just showed that the second law sets fundamental limits on the possible effi-
ciency of real machines like steam engines, refrigerators and information processing
devices. As everybody knows, real engines give off heat and real refrigerators and
real computers need power to do their job. The second law tells us to what ex-
tent heat can be used to perform work. The increase of entropy as we go from
one equilibrium situation to another is related to dissipation and the production of
heat, which is intimately linked to the important notion of irreversibility. A given
action in a closed system is irreversible if it makes it impossible for the system to
return to the state it was in before the action took place without external inputs.
Irreversibility is always associated with production of heat, because heat cannot be
freely converted to other forms of energy (whereas any other form of energy can
always be converted to heat). One can decrease the entropy of a system by doing
work on it, but in doing the work one has to increase the entropy of another system
(or of the system’s environment) by an equal or greater amount.

The theory of thermodynamics taken by itself does not connect entropy with
information. This only comes about when the results are interpreted in terms of a
microscopic theory, in which case temperature can be interpreted as being related to
uncertainty and incoherence in the position of particles. This requires a discussion
of statistical mechanics, as done in the next section.

There is another fundamental aspect to the second law which is important from
an operational as well as philosophical point of view. A profound implication of the
second law is that it defines an “arrow of time”, i.e., it allows us to distinguish the
past from the future. This is in contrast to the fundamental microscopic laws of
physics which are time reversal invariant (except for a few exotic interactions, that
are only very rarely seen under normal conditions as we find them on earth). If one
watches a movie of fundamental processes on the microscopic level it is impossible
to tell whether it is running forwards or backwards. In contrast, if we watch a
movie of macroscopic events, it is not hard to identify irreversible actions such as
the curling of smoke, the spilling of a glass of water, or the mixing of bread dough,
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which easily allow us to determine whether we are running in forward or reverse.
More formally, even if we didn’t know which way time were running, we could
pick out some systems at random and measure their entropy at times t1, t2, . . . The
direction in which entropy increases is the one that is going forward in time. Note
that we didn’t define an a priori direction of time in formulating the second law –
it establishes a time direction on its own, without any reference to atomic theory
or any other laws of physics.

The second law of thermodynamics talks only about the difference between the
entropy of different macrostates. The absolute scale for entropy is provided by the
third law of thermodynamics. This law states that when a system approaches the
absolute zero of temperature the entropy will go to zero, i.e.

T → 0 ⇒ S → 0. (2.7)

When T = 0 the heat is zero, corresponding classically to no atomic motion, and
the energy takes on its lowest possible value. In quantum theory we know that such
a lowest energy “ground” state also exists, though, if the ground state of the system
turns out to be degenerate the entropy will approach a nonzero constant at zero
temperature. We conclude by emphasizing that the laws of thermodynamics have
a wide applicability and a rich phenomenology that supports them unequivocally.

2.2. Free energy. Physicists are particularly concerned with what is called the
(Helmholtz) free energy, denoted F . It is a very important quantity because it de-
fines the amount of energy available to do work. As we discuss in the next section,
the free energy plays a central role in establishing the relation between thermo-
dynamics and statistical mechanics, and in particular for deriving the microscopic
definition of entropy in terms of probabilities.

The free energy is defined as

F ≡ U − TS. (2.8)

This implies that in differential form we have

dF = dU − TdS − SdT, (2.9)

which using (2.3) can be written as

dF = −PdV − SdT. (2.10)

The natural independent variables to describe the free energy of a gas are volume
and temperature.

Let us briefly reflect on the meaning of the free energy. Consider a system A in
thermal contact with a heat bath A′ kept at a constant temperature T0. Suppose
the system A absorbs heat d̄ Q from the reservoir. We may think of the total
system consisting of system plus bath as a closed system: A0 = A + A′. For A0

the second law implies that its entropy can only increase: dS0 = dS + dS′ ≥ 0. As
the temperature of the heat bath A′ is constant and its absorbed heat is −d̄Q, we
may write T0dS′ = −d̄ Q. From the first law applied to system A we obtain that
−d̄Q = −dU − d̄W , so that we can substitute the expression T0dS′ = −dU − d̄W
in T0dS + T0dS′ ≥ 0 to get −dU + T0dS ≥ d̄ W . As the system A is kept at a
constant temperature the left hand side is just equal to −dF , demonstrating that

−dF ≥ d̄W. (2.11)
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The maximum work that can be done by the system in contact with a heat reservoir
is (−dF ). If we keep the system parameters fixed, i.e. d̄ W = 0, we obtain that
dF ≤ 0, showing that for a system coupled to a heat bath the free energy can
only decrease, and consequently in a thermal equilibrium situation the free energy
reaches a minimum. This should be compared with the entropy, which reaches a
maximum at equilibrium.

We can think of the second law as telling us how different kinds of energy are
converted into one another: In an isolated system, work can be converted into heat,
but heat cannot be converted into work. From a microscopic point of view forms of
energy that are “more organized”, such as light, can be converted into those that
are “less organized”, such as the random motion of particles, but the opposite is
not possible.

From Equation (2.10) the pressure and entropy of a gas can be written as partial
derivatives of the free energy

P =
(

dF

dV

)

T

, S =
(

dF

dT

)

V

. (2.12)

So we see that for a system in thermal equilibrium the entropy is a state variable,
meaning that if we reversibly traverse a closed path we will return to the same value
(in contrast to other quantities, such as heat, which do not satisfy this property).
The variables P and S are dependent variables. This is evident from the Maxwell
relation, obtained by equating the two second derivatives

∂2F

∂T∂V
=

∂2F

∂V ∂T
, (2.13)

yielding the relation (
∂P

∂T

)

V

=
(

∂S

∂V

)

T

. (2.14)

3. Statistical mechanics

In dealing with masses of matter, while we do not perceive the individual

molecules, we are compelled to adopt what I have described as the statistical

method of calculation, and to abandon the strict dynamical method, in which

we follow every motion by the calculus.

J.C. Maxwell

We are forced to be contented with the more modest aim of deducing some of

the more obvious propositions relating to the statistical branch of mechanics.

Here there can be no mistake in regard to the agreement with the facts of

nature.

J.W. Gibbs

Statistical mechanics is the explanation of the macroscopic behavior of physical
systems using the underlying microscopic laws of physics, even though the micro-
scopic states, such as the position and velocity of individual particles, are unknown.
The key figures in the late 19th century development of statistical mechanics were
Maxwell, Boltzmann and Gibbs [46, 9, 23]. One of the outstanding questions was to
derive the laws of thermodynamics, in particular to give a microscopic definition of
the notion of entropy. Another objective was the understanding of phenomena that
cannot be computed from thermodynamics alone, such as transport phenomena.
For our purpose of highlighting the links with information theory we will give a
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brief and somewhat lopsided introduction. Our main goal is to show the origin of
the famous expression due to Gibbs for the entropy, S = −

∑
i pi ln pi, which was

later used by Shannon to define information.

3.1. Definitions and postulates.
Considerable semantic confusion has resulted from failure to distinguish be-

tween prediction and interpretation problems, and attempting a single formal-

ism to do both.

T.S. Jaynes

Statistical mechanics considers systems with many degrees of freedom, such as
atoms in a gas or spins on a lattice. We can think in terms of the microstates of the
system which are, for example, the positions and velocities of all the particles in a
vessel with gas. The space of possible microstates is called the phase space. For a
monatomic gas with N particles, the phase space is 6N -dimensional, corresponding
to the fact that under Newtonian mechanics there are three positions and three
velocities that must be measured for each particle in order to determine its future
evolution. A microstate of the whole system thus corresponds to a single point in
phase space.

Statistical mechanics involves the assumption that, even though we know that
the microstates exist, we are largely ignorant of their actual values. The only
information we have about them comes from macroscopic quantities, which are bulk
properties such as the total energy, the temperature, the volume, the pressure, or
the magnetization. Because of our ignorance we have to treat the microstates in
statistical terms. But the knowledge of the macroscopic quantities, along with the
laws of physics that the microstates follow, constrain the microstates and allow us
to compute relations between macroscopic variables that might otherwise not be
obvious. Once the values of the macroscopic variables are fixed there is typically
only a subset of microscopic states that are compatible with them, which are called
the accessible states. The number of accessible states is usually huge, but differences
in this number can be very important. In this chapter we will for simplicity assume
a discrete set of microstates, but the formalism can be straightforwardly generalized
to the continuous case.

The first fundamental assumption of statistical mechanics is that in equilibrium
a closed system has an equal a priori probability to be in any of its accessible
states. For systems that are not closed, for example because they are in thermal
contact or their particle number is not constant, the set of accessible states will be
different and their probabilities have to be calculated. In either case we associate an
ensemble of systems with a characteristic probability distribution over the allowed
microscopic states. Tolman [62] clearly describes the notion of an ensemble:

In using ensembles for statistical purposes, however, it is to be noted that

there is no need to maintain distinctions between individual systems since

we shall be interested merely in the number of systems at any time which

would be found in the different states that correspond to different regions

of phase space. Moreover, it is also to be noted for statistical purposes

that we shall wish to use ensembles containing a large enough population

of separate members so that the number of systems in such different

states can be regarded as changing continuously as we pass from the

states lying in one region of the phase space to those in another. Hence,
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for the purpose in view, it is evident that the condition of an ensemble

at any time can be regarded as appropriately specified by the density r

with which representative points are distributed over phase space.

The second postulate of statistical mechanics, called ergodicity, says that time av-
erages correspond to ensemble averages. That is, on one hand we can take the time
average by following the deterministic motion of the all the microscopic variables of
all the particles making up a system. On the other hand, at a given instant in time
we can take an average over all possible accessible states, weighting them by their
probability of occurrence. The ergodic hypothesis says that these two averages are
the same. We return to the restricted validity of this hypothesis in the section on
nonlinear dynamics.

3.2. Counting microstates for a system of magnetic spins. In the following
example we show how it is possible to derive the distribution of microscopic states
through the assumption of equipartition and simple counting arguments. This also
illustrates that the distribution over microstates becomes extremely narrow in the
thermodynamic (i.e. N → ∞ limit). Consider a system of N magnetic spins that
can only take two values sj = ±1, corresponding to whether the spin is pointing
up or down (often called Ising spins). The total number of possible configurations
equals 2N . For convenience assume N is even, and that the spins do not interact.
Now put these spins in an upward pointing magnetic field H and ask how many
configurations of spins are consistent with each possible value of the energy. The
energy of each spin is ej = ∓µH, and because they do not interact, the total energy
of the system is just the sum of the energies of each spin. For a configuration with
k spins pointing up and N − k spins pointing down the total energy can be written
as εm = 2mµH with m ≡ (N − 2k)/2 and −N/2 ≤ m ≤ N/2. The value of εm is
bounded : −NµH ≤ εm ≤ NµH and the difference between two adjacent energy
levels, corresponding to the flipping of one spin, is ∆ε = 2µH. The number of
microscopic configurations with energy εm equals

g(N, m) = g(N,−m) =
N !

( 1
2N + m)!( 1

2N −m)!
. (3.1)

The total number of states is
∑

m g(N, m) = 2N . For a thermodynamic system N
is really large, so we can approximate the factorials by the Stirling formula

N ! ∼=
√

2πNNNe−N+··· (3.2)

Some elementary math gives the Gaussian approximation for the binomial distri-
bution for large N ,

g(N, m) ∼= 2N

(
2

πN

) 1
2

e−2m2/N . (3.3)

We will return to this system later on, but at this point we merely want to show that
for large N the distribution is sharply peaked. Roughly speaking the width of the
distribution grows with

√
N while the peak height grows as 2N , so the degeneracy of

the states around m = 0 increases very rapidly. For example g(50, 0) = 1.264×1014,
but for N ≈ NA one has g(NA, 0) ∼= 101022

. We will return to this example in
the following section to calculate the magnetization of a spin system in thermal
equilibrium.
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3.3. The Maxwell-Boltzmann-Gibbs distribution. Maxwell was the first to
derive an expression for the probability distribution pi for a system in thermal
equilibrium, i.e. in thermal contact with a heat reservoir kept at a fixed temperature
T . This result was later generalized by Boltzmann and Gibbs. An equilibrium
distribution function of an ideal gas without external force applied to it should not
depend on either position or time, and thus can only depend on the velocities of
the individual particles. In general there are interactions between the particles that
need to be taken into account. A simplifying assumption that is well justified by
probabilistic calculations is that processes in which two particles interact at once
are much more common than those in which three or more particles interact. If we
assume that the velocities of two particles are independent before they interact we
can write their joint probability to have velocities v1 and v2 as a product of the
probability for each particle alone. This implies p(v1, v2) = p(v1)p(v2). The same
holds after they interact: p(v

′
1, v

′
2) = p(v′1)p(v′2). In equilibrium, where nothing

can depend on time, the probability has to be the same afterward, i.e. p(v1, v2) =
p(v′1, v′2). How do we connect these conditions before and after the interaction? A
crucial observation is that there are conserved quantities that are preserved during
the interaction and the equilibrium distribution function can therefore only depend
on those. Homogeneity and isotropy of the distribution function selects the total
energy of the particles as the only function on which the distribution depends. The
conservation of energy in this situation boils down to the simple statement that
1
2mv2

1 + 1
2mv2

2 = 1
2mv′1

2 + 1
2mv′2

2. From these relations Maxwell derived the well
known thermal equilibrium velocity distribution,

p0(v) = n
( m

2πT

)3/2
e−mv2/2kT . (3.4)

The distribution is Gaussian. As we saw, to derive it Maxwell had to make a
number of assumptions which were plausible even though they couldn’t be derived
from the fundamental laws of physics. Boltzmann generalized the result to include
the effect of an external conservative force, leading to the replacement of the kinetic
energy in (3.4) by the total conserved energy, which includes potential as well as
kinetic energy.

Boltzmann’s generalization of Maxwell’s result makes it clear that the probability
distribution pi for a general system in thermal equilibrium is given by

pi =
e−εi/T

Z
. (3.5)

Z is a normalization factor that ensures the conservation of probability, i.e.
∑

i pi =
1. This implies that

Z ≡
∑

i

e−εi/T . (3.6)

Z is called the partition function. The Boltzmann distribution describes the canon-
ical ensemble, that is it applies to any situation where a system is in thermal
equilibrium and exchanging energy with its environment. This is in contrast to
the microcanonical ensemble, which applies to isolated systems where the energy
is constant, or the grand canonical ensemble, which applies to systems that are
exchanging both energy and particles with their environment3. To illustrate the

3Gibbs extended the Boltzmann result to situations where the number of particles is not
fixed, leading to the introduction of the chemical potential. Because of its complicated history,
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power of the Boltzmann distribution let us briefly return to the example of the
thermal distribution of Ising spins on a lattice in an external magnetic field. As we
pointed out in section (3.2), the energy of a single spin is ±µH. According to the
Boltzmann distribution, the probabilities of spin up or spin down are

p± =
e∓µH/T

Z
. (3.7)

The spin antiparallel to the field has lowest energy and therefore is favored. This
leads to an average field dependent magnetization mH (per spin)

mH = 〈µ〉 =
µp+ + (−µ)p−

p+ + p−
= µ tanh

uH

T
. (3.8)

This example shows how statistical mechanics can be used to establish relations be-
tween macroscopic variables that cannot be obtained using thermodynamics alone.

3.4. Free energy revisited. In our discussion of thermodynamics in section 2.2 we
introduced the concept of the free energy F defined by equation 2.8, and argued that
it plays a central role for systems in thermal contact with a heat bath, i.e. systems
kept at a fixed temperature T . In the previous section we introduced the concept
of the partition function Z defined by equation 3.6. Because all thermodynamic
quantities can be calculated from it, the importance of the partition function Z
goes well beyond its role as a normalization factor. The free energy is of particular
importance, because its functional form leads directly to the definition of entropy in
terms of probabilities. We can now directly link the thermodynamical quantities to
the ones defined in statistical mechanics. This is done by postulating4 the relation
between the free energy and the partition function as5

F = −T lnZ, (3.9)

or alternatively Z = e−F/T . From this definition it is possible to calculate all
thermodynamical quantities, for example using equations (2.12). We will now derive
the expression for the entropy in statistical mechanics in terms of probabilities.

3.5. Gibbs entropy. The definition of the free energy in equation (2.8) implies
that

S =
U − F

T
. (3.10)

From (3.9) and (3.5) it follows that

F = εi + T ln pi. (3.11)

Note that even though both the terms on the right depend on i the free energy F
is independent of i. The equilibrium value for the internal energy is by definition

U = 〈ε〉 ≡
∑

i

εi pi . (3.12)

the exponential distribution is referred to by a variety of names, including Gibbs, Boltzmann,
Boltzmann-Maxwell, and Boltzmann-Gibbs.

4Once we have identified a certain macroscopic quantity like the free energy with a microscopic
expression, then of course the rest follows. Which expression is taken as the starting point for the
identification is quite arbitrary. The justification is a posteriori in the sense that the well known
thermodynamical relations should be recovered.

5Boltzmann’s constant k relates energy to temperature. Its value in conventional units is
1.4×10−23joule/kelvin, but we have set it equal to unity, which amounts to choosing a convenient
unit for energy or temperature.
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With these expressions for S, F and U , and making use of the fact that F is inde-
pendent of i and

∑
i pi = 1, we can rewrite the entropy in terms of the probabilities

pi and arrive at the famous expression for the entropy:

S = −
∑

i

pi ln pi . (3.13)

This expression is usually called the Gibbs entropy6.
In the special case where the total energy is fixed, the w different (accessible)

states all have equal a priori probability pi = p = 1/w. Substitution in the Gibbs
formula yields the expression in terms of the number of accessible states, originally
due to Boltzmann (and engraved on his tombstone):

S = lnw. (3.14)

We emphasize that the entropy grows logarithmically with the number of accessible
states7. Consider a system consisting of a single particle that can be in one of
two states. Assuming equipartition the entropy is S1 = ln 2. For a system with
Avogadro’s number of particles N ∼ 1023, so there are 2N states and if we assume
independence the entropy is SN = ln 2N = NS1, a very large number. The tendency
of a system to maximize its entropy is a probabilistic statement: The number of
states with half of the particles in one state and half in the other is enormously
larger than the number in which all the particles are in the same state, and when
the system is left free it will relax to the most probable accessible state. The
state of a gas particle depends not only on its allowed position (i.e. the volume
of the vessel), but also on its allowed range of velocities: If the vessel is hot that
range is larger then when the vessel is cold. So for an ideal gas one finds that the
entropy increases with the logarithm of the temperature. The fact that the law is a
probabilistic implies that it is not completely impossible that the system will return
to a highly improbable initial state. Poincaré showed that it is bound to happen
and gave an estimate of the recurrence time (which for a macroscopic system is
much larger than the lifetime of the universe).

The Gibbs entropy transcends its origins in statistical mechanics. It can be used
to describe any system with states {ψi} and a given probability distribution {pi}.
Credit for realizing this is usually given to Shannon [55], although antecedents
include Szilard, Nyquist and Hartley. Shannon proposed that by analogy to the
entropy S, information can be defined as

H ≡ −
∑

i

pi log2 pi. (3.15)

In information theory it is common to take logarithms in base two and drop the
Boltzmann constant8. Base two is a natural choice of units when dealing with
binary numbers and the units of entropy in this case are called bits; in contrast,
when using the natural logarithm the units are called nats, with the conversion
that 1 nat =1.443 bits . For example a memory consisting of 5 bits (which is the

6In quantum theory this expression is replaced by S = −Tr ρ ln ρ where ρ is the density matrix
of the system.

7These numbers can be overwhelmingly large. Imagine two macrostates of a system which differ
by 1 millicalorie at room temperature. The difference in entropy is ∆S = −∆Q/T = 10−3/293 ≈
10−5. Thus the ratio of the number of accessible states is w2/w1 = exp(∆S/k) ≈ exp(1018), a
big number!

8In our convention k=1, so H = S/ ln 2.
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same as a system of 5 Ising spins), has N = 25 states. Without further restrictions
all of these states (messages) have equal probability i.e. pi = 1/N so that the
information content is H = −N 1

N log2
1
N = log2 25 = 5 bits. Similarly consider

a DNA-molecule with 10 billion base pairs, each of which can be in one of four
combinations (A-T,C-G,T-A,G-C). The molecule can a priori be in any of 41010

configurations so the naive information content (assuming independence) is H =
2× 1010 bits. The logarithmic nature of the definition is unavoidable if one wants
the additive property of information under the addition of bits. If in the previous
spin example we add another string of 3 bits then the total number of states is
N = N1N2 = 25 × 23 = 28 from which it also follows that H = H1 + H2 = 8. If
we add extra ab initio correlations or extra constraints we reduce the number of
independent configurations and consequently H will be smaller.

As we will discuss in Section 5, this quantitative definition of information and its
applications transcend the limited origin and scope of conventional thermodynam-
ics and statistical mechanics, as well as Shannon’s original purpose of describing
properties of communication channels. See also [11].

4. Nonlinear dynamics

The present state of the system of nature is evidently a consequence of

what it was in the preceding moment, and if we conceive of an intelligence

which at a given instant comprehends all the relations of the entities of

this universe, it could state the respective position, motions, and general

effects of all these entities at any time in the past or future.

Pierre Simon de Laplace (1776)

A very small cause which escapes our notice determines a considerable

effect that we cannot fail to see, and then we say that the effect is due

to chance.

Henri Poincaré (1903).

From a naive point of view statistical mechanics seems to contradict the deter-
minism of Newtonian mechanics. For any initial state x(0) (a vector of positions
and velocities) Newton’s laws define a dynamical system φt (a set of differential
equations) that maps x(0) into its future states x(t) = φt(x(0)). This is completely
deterministic. As Laplace so famously asserted, if mechanical objects obey New-
ton’s laws, why do we need to discuss perfect certainties in statistical terms?
Laplace partially answered his own question:

. . . But ignorance of the different causes involved in the production of

events, as well as their complexity, taken together with the imperfection

of analysis, prevent our reaching the same certainty [as in astronomy]

about the vast majority of phenomena. Thus there are things that are

uncertain for us, things more or less probable, and we seek to compen-

sate for the impossibility of knowing them by determining their different

degrees of likelihood. So it is that we owe to the weakness of the human

mind one of the most delicate and ingenious of mathematical theories,

the science of chance or probability.

Laplace clearly understood the need for statistical descriptions, but at that point
in time was not fully aware of the consequences of nonlinear dynamics. As Poincaré
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later showed, even without human uncertainty (or quantum mechanics), when New-
ton’s laws give rise to differential equations with chaotic dynamics, we inevitably
arrive at a probabilistic description of nature. Although Poincaré discovered this
in the course of studying the three body problem in celestial mechanics, the an-
swer he found turns out to have relevance for the reconciliation of the deterministic
Laplacian universe with statistical mechanics.

4.1. The ergodic hypothesis. As we mentioned in the previous section, one of the
key foundations in Boltzmann’s formulation of statistical mechanics is the ergodic
hypothesis. Roughly speaking, it is the hypothesis that a given trajectory will
eventually find its way through all the accessible microstates of the system, e.g. all
those that are compatible with conservation of energy. At equilibrium the average
length of time that a trajectory spends in a given region of the state space is
proportional to the number of accessible states the region contains. If the ergodic
hypothesis is true, then time averages equal ensemble averages, and equipartition
is a valid assumption.

The ergodic hypothesis proved to be highly controversial for good reason: It is
generally not true. The first numerical experiment ever performed on a computer
took place in 1947 at Los Alamos when Fermi, Pasta, and Ulam set out to test
the ergodic hypothesis. They simulated a system of masses connected by nonlinear
springs. They perturbed one of the masses, expecting that the disturbance would
rapidly spread to all the other masses and equilibrate, so that after a long time
they would find all the masses shaking more or less randomly. Instead they were
quite surprised to discover that the disturbance remained well defined – although
it propagated through the system, it kept its identity, and after a relatively short
period of time the system returned very close to its initial state. They had in fact
rediscovered a phenomenon that has come to be called a soliton, a localized but
very stable travelling disturbance. There are many examples of nonlinear systems
that support solitons. Such systems do not have equal probability to be in all their
accessible states, and so are not ergodic.

Despite these problems, there are many examples where we know that statistical
mechanics works extremely well. There are even a few cases, such as the hard sphere
gas, where the ergodic hypothesis can actually be proved. But more typically this
is not the case. The evidence for statistical mechanics is largely empirical: we know
that it works, at least to a very high degree of approximation. Subsequent work
has made it clear that the typical situation is much more complicated than was
originally imagined. While some trajectories may wander in more or less random
fashion around much of the accessible phase space, they are blocked from entering
certain regions by what are called KAM (Kolomogorov-Arnold-Moser) tori. Other
initial conditions yield trajectories that make regular motions and lie on KAM tori
trajectories. The KAM tori are separated from each other, and have a lower dimen-
sion than the full accessible phase space. Such KAM tori correspond to situations
in which there are other conversation laws in addition to the conservation of en-
ergy, which may depend on initial conditions as well as other parameters9. Solitons

9Dynamical systems that conserve energy and obey Newton’s laws have special properties that
cause the existence of KAM tori. Dissipative systems typically have attractors, subsets of the
state space that orbits converge onto. Energy conserving systems do not have attractors, and
often have chaotic orbits tightly interwoven with regular orbits.
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are examples of this in which the solutions can be interpreted as a geometrically
isolated pulse.

There have now been an enormous number of studies of ergodicity in nonlinear
dynamics. While there are no formal theorems that definitively resolve this, the
accumulated lore from these studies suggests that for nonlinear systems that do
not have hidden symmetries, as the number of interacting components increases
and nonlinearities become stronger, the generic behavior is that chaotic behavior
becomes more and more likely – the KAM tori shrink, fewer and fewer initial
conditions are trapped on them, and the regions they exclude become smaller.
The ergodic hypothesis becomes an increasingly better approximation, a typical
single trajectory can reach almost all accessible states, and equipartition becomes
a good assumption. The problems occur in understanding when there are hidden
symmetries that can support phenomena like solitons. The necessary and sufficient
conditions for ergodicity to be a good assumption remains an active field of research.

4.2. Chaos and limits to prediction. The discovery of chaos makes it clear
that Boltzmann’s use of probability is even more justified than he realized. When
motion is chaotic, two infinitesimally nearby trajectories separate at an exponential
rate [45, 56, 12, 58]. This is a geometric property of the underlying nonlinear
dynamics. From a linear point of view the dynamics are locally unstable. To make
this precise, consider two N dimensional initial conditions x(0) and x′(0) that are
initially separated by an infinitesimal vector δx(0) = x(0) − x′(0). Providing the
dynamical system is differentiable, the separation will grow as

δx(t) = Dφt(x(0))δx(0), (4.1)

where Dφt(x(0)) is the derivative of the dynamical system φt evaluated at the ini-
tial condition x(0). For any fixed time t and initial condition x(0), Dφt is just
an N × N matrix, and this is just a linear equation. If the motion is chaotic the
length of the separation vector δx will grow exponentially with t in at least one
direction, as shown in Figure 3. The figure shows how the divergence of nearby
trajectories is the underlying reason chaos leads to unpredictability. A perfect mea-
surement would correspond to a point in the state space, but any real measurement
is inaccurate, generating a cloud of uncertainty. The true state might be anywhere
inside the cloud. As shown here for the Lorenz equations (a simple system of three
coupled nonlinear differential equations [45]), the uncertainty of the initial mea-
surement is represented by 10,000 red dots, initially so close together that they
are indistinguishable; a single trajectory is shown for reference in light blue. As
each point moves under the action of the equations, the cloud is stretched into a
long, thin thread, which then folds over onto itself many times, until the points are
mixed more or less randomly over the entire attractor. Prediction has now become
impossible: the final state can be anywhere on the attractor. For a regular motion,
in contrast, all the final states remain close together. We can think about this in
information theoretic terms; for a chaotic motion information is initially lost at a
linear rate which eventually results in all the information being lost – for a regular
motion the information loss is relatively small. The numbers above the illustration
are in units of 1/200 of the natural time units of the Lorenz equations. (From [12]).

Nonetheless, at the same time the motion can be globally stable, meaning that
it remains contained inside a finite volume in the phase space. This is achieved
by stretching and folding – the nonlinear dynamics knead the phase space through
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Figure 3. The divergence of nearby trajectories for the Lorenz
equations. See the text for an explanation



19

local stretching and global folding, just like a baker making a loaf of bread. Two
trajectories that are initially nearby may later be quite far apart, and still later,
may be close together again. This property is called mixing. More formally, the
dynamics are mixing over a given set Σ and invariant measure10 µ with support Σ
such that for any subsets A and B

lim
t→∞

µ(φtB ∩A) = µ(A)µ(B). (4.2)

Intuitively, this just means that B is smeared throughout Σ by the flow, so that
the probability of finding a point originating in B inside of A is just the original
probability of B, weighted by the probability of A. Geometrically, this happens
if and only if the future trajectory of B is finely “mixed” throughout Σ by the
stretching and folding action of φt.

Mixing implies ergodicity, so any dynamical system that is mixing over Σ will
also be ergodic on Σ. It only satisfies the ergodic hypothesis, however, if Σ is the
set of accessible states. This need not be the case. Thus, the fact that a system has
orbits with chaotic dynamics doesn’t mean that it necessarily satisfies the ergodic
hypothesis – there may be still be subsets of finite volume in the phase space that
are stuck making regular motions, for example on KAM tori.

Nonetheless, chaotic dynamics has strong implications for statistical mechanics.
If a dynamical system is ergodic but not mixing11, by measuring the microstates
it is in principle possible to make detailed long range predictions by measuring the
position and velocity of all its microstates, as suggested by Laplace. In contrast, if
it is mixing then even if we know the initial values of the microstates at a high (but
finite) level of precision, all this information is asymptotically lost, and statistical
mechanics is unavoidable12.

4.3. Quantifying predictability. Information theory can be used to quantify pre-
dictability [56]. To begin the discussion, consider a measuring instrument with a
uniform scale of resolution ε. For a ruler, for example, ε is the distance between
adjacent graduations. If such a measuring instrument is assigned to each of the N
real variables in a dynamical system, the graduations of these instruments induce
a partition Π of the phase space, which is a set of non-overlapping N dimensional
cubes, labeled Ci, which we will call the outcomes of the measurement. A mea-
surement determines that the state of the system is in a given cube Ci. If we let
transients die out, and restrict our attention to asymptotic motions without exter-
nal perturbations, let us assume the motion is confined to a set Σ (which in general
depends on the initial condition). We can then compute the asymptotic probability
of a given measurement by measuring its frequency of occurrence pi, and if the
motion is ergodic on Σ, then we know that there exists an invariant measure µ
such that pi = µ(Ci). To someone who knows the invariant measure µ but knows
nothing else about the state of the system, the average information that will be

10A measure is invariant over a set Σ with respect to the dynamics φt if it satisfies the condition
µ(A) = µ(φ−t(A)), where A is any subset of Σ. There can be many invariant measures, but the
one that we have in mind throughout is the one corresponding to time averages.

11A simple example of a system that is ergodic but not mixing is a dynamical system whose
solution is the sum of two sinusoids with irrationally related frequencies.

12An exception is that some systems display phase invariance even while they are chaotic.
The orbits move around an attractor, being chaotically scrambled transverse to their direction of
motion but keeping their timing for completing a circuit of the attractor [19].
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gained in making a measurement is just the entropy

I(ε) = −
∑

i

pi log pi. (4.3)

We are following Shannon in calling this “information” since it represents the el-
ement of surprise in making the measurement. The information is written I(ε) to
emphasize its dependence on the scale of resolution of the measurements. This can
be used to define a dimension for µ. This is just the asymptotic rate of increase of
the information with resolution, i.e.

D = lim
ε→0

I(ε)
| log ε| . (4.4)

This is called the information dimension [18]. Note that this reduces to what is
commonly called the fractal dimension when pi is sufficiently smooth, i.e. when∑

i pi log pi ≈ log n, where n is the number of measurement outcomes with nonzero
values of pi.

This notion of dimension can be generalized by using the Renyi entropy Rα

Rα =
1

1− α
log

∑

i

pα
i (4.5)

where α ≥ 0 and α 0= 1. The value for α = 1 is defined by taking the limit as
α → 1, which reduces to the usual Shannon entropy. By replacing the Shannon
entropy by the Renyi entropy it is possible to define a generalized dimension dα.
This contains the information dimension in the special case α = 1. This has proved
to be very useful in the study of multifractal phenomena (fractals whose scalings
are irregular). We will say more about the use of such alternative entropies in the
next section.

The discussion so far has concerned the amount of information gained by an
observer in making a single, isolated measurement, i.e. the information gained in
taking a “snapshot” of a dynamical system. We can alternatively ask how much
new information is obtained per unit time by an observer who is watching a movie
of a dynamical system. In other words, what is the information acquisition rate of
an experimenter who makes a series of measurements to monitor the behavior of a
dynamical system? For a regular dynamical system (to be defined more precisely
in a moment) new measurements asymptotically provide no further information in
the limit t → ∞. But if the dynamical system is chaotic, new measurements are
constantly required to update the knowledge of the observer in order to keep the
observer’s knowledge of the state of the system at the same resolution.

This can be made more precise as follows. Consider a sequence of m measure-
ments (x1, x2, . . . , xm) = Xm, where each measurement corresponds to observing
the system in a particular N dimensional cube. Letting p(Xm) be the probability
of observing the sequence Xm, the entropy of this sequence of measurements is

Hm = −
∑

i

p(Xm) log p(Xm) (4.6)

We can then define the information acquisition rate as

h = lim
m→∞

Hm

m∆t
. (4.7)

∆t is the sampling rate for making the measurements. Providing ∆t is sufficiently
small and other conditions are met, h is equal to the metric entropy, also called the
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Kolmogorov-Sinai (KS) entropy13. Note that this is not really an entropy, but an
entropy production rate, which (if logs are taken to base 2) has units of bits/second.
If h〉0 the motion is chaotic, and if h = 0 it is regular. Thus, when the system is
chaotic, the entropy Hm contained in a sequence of measurements continues to
increase even in the limit as the sequence becomes very long. In contrast, for a
regular motion this reaches a limiting value.

Although we have so far couched the discussion in terms of probabilities, the
metric entropy is determined by geometry. The average rates of expansion and
contraction in a trajectory of a dynamical system can be characterized by the
spectrum of Lyapunov exponents. These are defined in terms of the eigenvalues
of Dφt, the derivative of the dynamical system, as defined in equation 4.1. For a
dynamical system in N dimensions, let the N eigenvalues of the matrix Dφt(x(0))
be αi(t). Because Dφt is a positive definite matrix, the αi are all positive. The
Lyapunov exponents are defined as λi = limt→∞ log αi(t)/t. To think about this
more geometrically, imagine an infinitesimal ball that has radius ε(0) at time t = 0.
As this ball evolves under the action of the dynamical system it will distort. Since
the ball is infinitesimal, however, it will remain an ellipsoid as it evolves. Let
the principal axes of this ellipsoid have length εi(t). The spectrum of Lyapunov
exponents for a given trajectory passing through the initial ball is

λi = lim
t→∞

lim
ε(0)→0

1
t

log
εi(t)
ε(0)

. (4.8)

For an N dimensional dynamical system there are N Lyapunov exponents. The
positive Lyapunov exponents λ+ measure the rates of exponential divergence, and
the negative ones λ− the rates of convergence. They are related to the metric
entropy by Pesin’s theorem

h =
∑

i

λ+
i . (4.9)

In other words, the metric entropy is the sum of the positive Lyapunov exponents,
and it corresponds to the average exponential rate of expansion in the phase space.

Taken together the metric entropy and information dimension can be used to
estimate the length of time that predictions remain valid. The information di-
mension allows an estimate to be made of the information contained in an initial
measurement, and the metric entropy estimates the rate at which this information
decays.

As we have already seen, for a series of measurements the metric entropy tells
us the information gained with each measurement. But if each measurement is
made with the same precision, the information gained must equal the information
that would have been lost had the measurement not been made. Thus the metric
entropy also quantifies the initial rate at which knowledge of the state of the system
is lost after a measurement.

To make this more precise, let pij(t) be the probability that a measurement
at time t has outcome j if a measurement at time 0 has outcome i. In other
words, given the state was measured in partition element Ci at time 0, what is the
probability it will be in partition element Cj at time t?. By definition pij(0) = 1

13In our discussion of metric entropy we are sweeping many important mathematical formalities
under the rug. For example, to make this definition precise we need to take a supremum over all
partitions and sampling rates. Also, it is not necessary to make the measurements in N dimensions
– there typically exists a one dimensional projection that is sufficient, under an optimal partition.
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if i = j and pij(0) = 0 otherwise. With no initial information, the information
gained from the measurement is determined solely by the asymptotic measure µ,
and is − log µ(Cj). In contrast, if Ci is known the information gained on learning
outcome j is − log pij(t). The extra information using a prediction from the initial
data is the difference of the two or log(pij(t)/µ(Cj)). This must be averaged over
all possible measurements Cj at time t, and all possible initial measurements Ci.
The measurements Cj are weighted by their probability of occurrence pij(t), and
the initial measurements are weighted by µ(Ci). This gives

I(t) =
∑

i,j

µ(Ci)pij(t) log(
pij(t)
µ(Cj)

). (4.10)

It can easily be shown that in the limit where the initial measurements are made
arbitrarily precise, I(t) will initially decay at a linear rate, whose slope is equal to
the metric entropy. For measurements with signal to noise ratio s, i.e. with log s ≈
| log ε|, I(0) ≈ DI log s. Thus I(t) can be approximated as I(t) ≈ DI log s−ht, and
the initial data becomes useless after a characteristic time τ = (DI/h) log s.

To conclude, chaotic dynamics provides the link that connects deterministic dy-
namics with probability. While we can discuss chaotic systems in completely de-
terministic terms, as soon as we address problems of measurement and long-term
predictability we are forced to think in probabilistic terms. The language we have
developed above, of information dimension, Lyapunov exponents, and metric en-
tropy, provide the link between the geometric and probabilistic views. Chaotic dy-
namics can happen even in a few dimensions, but as we move to high dimensional
systems, e.g. when we discuss the interactions between many particles, probability
is thrust on us for two reasons: The difficulty of keeping track of all the degrees
of freedom, and the “increased likelihood” that nonlinear interactions will give rise
to chaotic dynamics. “Increased likelihood” is in quotations because, despite more
than a century of effort, understanding the necessary and sufficient conditions for
the validity of statistical mechanics remains an open problem.

5. About Entropy

In this section we will discuss various aspects of entropy, its relation with informa-
tion theory and the sometimes confusing connotations of order, disorder, ignorance
and incomplete knowledge. This will be done by treating several well known puz-
zles and paradoxes related with the concept of entropy. A derivation of the second
law using the procedure called coarse graining is presented. The extensivity or ad-
ditivity of entropy is considered in some detail, also when we discuss nonstandard
extensions of the definition of entropy.

5.1. Entropy and information. The important innovation Shannon made was
to show that the relevance of the concept of entropy considered as a measure of
information was not restricted to thermodynamics, but could be used in any context
where probabilities can be defined. He applied it to problems in communication
theory and showed that it can be used to compute a bound on the information
transmission rate using an optimal code.

One of the most basic results that Shannon obtained was to show that the choice
of the Gibbs form of entropy to describe uncertainty is not arbitrary, even when it is
used in a very general context. Both Shannon and Khinchin [36] proved that if one
wants certain conditions to be met by the entropy function then the functional form
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originally proposed by Gibbs is the unique choice. The fundamental conditions as
specified by Khinchin are:

(1) For a given n and
∑n

i=1 pi = 1, the required function H(p1, ...pn) is maxi-
mal for all pi = 1/n.

(2) The function should satisfy H(p1, ...pn, 0) = H(p1, ...pn). The inclusion of
an impossible event should not change the value of H.

(3) If A and B are two finite sets of events, not necessarily independent, the
entropy H(A, B) for the occurrence of joint events A and B is the entropy
for the set A alone plus the weighted average of the conditional entropy
H(B|Ai) for B given the occurrence of the ith event Ai in A,

H(A, B) = H(A) +
∑

i

piH(B|Ai) (5.1)

where event Ai occurs with probability pi.
The important result is that given these conditions the function H given in equation
(3.15) is the unique solution. Shannon’s key insight was that the results of Boltz-
mann and Gibbs in explaining entropy in terms of statistical mechanics had unin-
tended and profound side-effects, with a broader and more fundamental meaning
that transcended their physical origin of entropy. The importance of the abstract
conditions formulated by Shannon and Khinchin show the very general context in
which the Gibbs-Shannon function is the unique answer. Later on we will pose
the question of whether there are situations where not all three conditions are
appropriate, leading to alternative expressions for the entropy.

5.2. The Landauer principle. Talking about the relation between information
and entropy it may be illuminating to return briefly to the Landauer principle[39,
40], which as we mentioned in the first section, is a particular formulation of the
second law of thermodynamics well suited for the context of information theory.
The principle expresses the fact that erasure of data in a system necessarily in-
volves producing heat, and thereby increasing the entropy. We have illustrated the
principle in figure 4. Consider a “gas” consisting of a single atom in a symmetric

|1>

|0>

|1>

Figure 4. An illustration of the Landauer principle using a very
simple thermodynamical system.

container with volume 2V, in contact with a heat bath. We imagine that the posi-
tion of the particle acts as a memory with one bit of information, corresponding to
whether the atom is on the left or on the right. Erasing the information amounts
to resetting the device to the “reference” state 1 independent of the initial state.
Erasure corresponds therefore to reinitializing the system rather then making a
measurement. It can be done by first opening a diaphragm in the middle, then
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reversibly moving the piston from the right in, and finally closing the diaphragm
and moving the piston back. In the first step the gas expands freely to the double
volume. The particle doesn’t do any work, the energy is conserved, and therefore
no heat will be absorbed from the reservoir. This is an irreversible adiabatic process
by which the entropy S of the gas increases by a factor k ln 2V/V = k ln 2. (The
number of states the particle can be in is just the volume; the average velocity is
conserved because of the contact with the thermal bath and will not contribute
to the change in entropy). In the second part of the erasure procedure we bring
the system back to a state which has the same entropy as the initial state. We
do this through a quasistatic (i.e. reversible) isothermal process at temperature T.
During the compression the entropy decreases by k ln 2. This change of entropy is
nothing but the amount of heat delivered by the gas to the reservoir divided by the
temperature, i.e. ∆S =

∫
dS =

∫
dQ/T = ∆Q/T . The heat produced ∆Q equals

the net amount of work W that has been done in the cycle by moving the piston
during the compression. The conclusion is that during the erasure of one bit of
information the device had to produce at least ∆Q = kT ln 2 of heat.

We may look at the same process somewhat more abstractly, purely from the
point of view of information. We map the erasure of information for the simple
memory device on the sequence of diagrams depicted in figure 5. We choose this

A B C

Figure 5. A phase space picture of Landauer’s principle. See text
for an explanation.

representation of the accessible (phase) space to clearly mark the differences be-
tween the situation where the particle is in the left or the right (A), the left and the
right (B), and the left compartment only (C). In part A the memory corresponds to
the particle being either in the left or in the right compartment. In B the partition
has been removed and through the free expansion the phase space has doubled and
consequently the entropy increased by ln 2. In C the system is brought back to
the reference state, i.e. the particle is brought in the left compartment. This is
done by moving a piston in from the right, inserting the partition, and moving the
piston out again. It is in the compressing step that the phase space is reduced by
a factor of two and hence entropy is reduced by ln 2. This is possible because we
did work, producing a corresponding amount of heat (∆Q ≥ T ln 2). Note that in
this representation one can in principle change the sizes of the partitions along the
horizontal directions and the a priori probabilities along the vertical direction to
model different types or aspects of memory devices.

5.3. The entropy as a relative concept.
Irreversibility is a consequence of the explicit introduction of ignorance into the

fundamental laws.

M. Born
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There is a surprising amount of confusion about the interpretation and meaning
of the concept of entropy [27, 14]. One may wonder to what extent the “entropic
principle” just is an “anthropocentric principle”? That is, does entropy depend
only on our perception, or is it something more fundamental? Is it a subjective
attribute in the domain of the observer or is it an intrinsic property of the physical
system we study? Let us consider the common definition of entropy as a measure
of disorder. This definition can be confusing unless we are careful in spelling out
what we mean by order or disorder. We may for instance look at the crystallization
of a supercooled liquid under conditions where it is a closed system, i.e. when no
energy is exchanged with the environment. Initially the molecules of the liquid
are free to randomly move about, but then (often through the addition of a small
perturbation that breaks the symmetry) the liquid suddenly turns into a solid by
forming a crystal in which the molecules are pinned to the sites of a regular lattice.
From one point of view this a splendid example of the creation of order out of
chaos. Yet from standard calculations in statistical mechanics we know that the
entropy increases during crystallization. This is because what meets the eye is only
part of the story. During crystallization entropy is generated in the form of latent
heat, which is stored in the vibrational modes of the molecules in the lattice. Thus,
even though in the crystal the individual molecules are constrained to be roughly
in a particular location, they vibrate around their lattice sites more energetically
than when they were free to wander. From a microscopic point of view there are
more accessible states in the crystal than there were in the liquid, and thus the
entropy increases. The thermodynamic entropy is indifferent to whether motions
are microscopic or macroscopic – it only counts the number of accessible states and
their probabilities.

In contrast, to measure the sense in which the crystal is more orderly, we must
measure a different set of probabilities. To do this we need to define probabilities
that depend only on the positions of the particles and not on their velocities. To
make this even more clear-cut, we can also use a more macroscopic partition, large
enough so that the thermal motions of a molecule around its lattice site tend to
stay within the same partition element. The entropy associated with this set of
probabilities, which we might call the “spatial order entropy”, will behave quite
differently from the thermodynamic entropy. For the liquid, when every particle
is free to move anywhere in the container, the spatial order entropy will be high,
essentially at its largest possible value. After the crystallization occurs, in contrast,
the spatial order entropy will drop dramatically. Of course, this is not the ther-
modynamic entropy, but rather an entropy that we have designed to quantitatively
capture the aspect of the crystalline order that we intuitively perceive.

As we emphasized before, Shannon’s great insight was that it is possible to
associate an entropy with any set of probabilities. However, the example just given
illustrates that when we use entropy in the broader sense of Shannon we must
be very careful to specify the context of the problem. Shannon entropy is just a
function that reduces a set of probabilities to a number, reflecting how many nonzero
possibilities there are as well as the extent to which the set of nonzero probabilities
is uniform or concentrated. Within a fixed context, a set of probabilities that is
smaller and more concentrated can be interpreted as more “orderly”, in the sense
that fewer numbers are needed to specify the set of possibilities. Thermodynamics
dictates a particular context – we have to measure probabilities in the full state
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space. Thermodynamic entropy is a special case of Shannon entropy. In the more
general context of Shannon, in contrast, we can define probabilities however we
want, depending on what we want to do. But to avoid confusion we must always
be careful to keep this context in mind, so that we know what our computation
means.

5.4. Maxwell’s demon.

The “being” soon came to be called Maxwell’s demon, because of its far-

reaching subversive effects on the natural order of things. Chief among these

effects would be to abolish the need for energy sources such as oil, uranium and

sunlight.

C.H. Bennett

The second law of thermodynamics is statistical, deriving from the fact that the
individual motions of the molecules are not observed or controlled in any way.
Would things be different if we could intervene on a molecular scale? This question
gives rise to an important paradox posed by Maxwell in 1872, which appeared in
his Theory of Heat [46]. This has subsequently been discussed by generations of
physicists, notably Szilard [61], Brillouin[11], Landauer [39], Bennet [6] and others.

Maxwell described his demonic setup as follows: “Let us suppose that a vessel
is divided in two portions, A and B, by a division in which there is a small hole,
and that a being who can see individual molecules opens and closes this hole, so
as to allow only the swifter particles to to pass from A to B, and only the slower
ones to pass from B to A. He will thus, without expenditure of work, raise the
temperature of B and lower that of A, in contradiction with the second law of
thermodynamics.” In attempts to save the second law from this demise, many
aspects of the problem have been proposed for its resolution, including Brownian
motion, quantum uncertainty and even Gödel’s Theorem. The resolution of the
paradox touches on some very fundamental issues that center on the question of
how the demon might actually realize his subversive interventions.

Szilard clarified the discussion by introducing an engine (or thermodynamic cy-
cle), which is depicted in the left half of figure 6. He and Brillouin focused on the
measurement the demon has to perform in order to find out in which half of the
vessel the particle is located after the partition has been put into place. For the
demon to “see” the actual molecules he has to use a measurement device, such as
a source of light (photons) and a photon detector. He will in principle be able to
measure whether a molecule is faster or slower then the thermal average by scat-
tering a photon off of it. Brillouin tried to argue that the entropy increase to the
whole system once the measurement is included would always be larger or equal
then the entropy gain achieved by the subsequent actions of the demon. However,
this argument didn’t hold; people were able to invent devices that got around the
measurement problem, so that it appeared the demon could beat the second law.

Instead, the resolution of the paradox comes from a very different source. In
1982 Bennett gave a completely different argument to rescue the second law. The
fundamental problem is that under Landauer’s principle, production of heat is nec-
essary for erasure of information (see section 5.2). Bennett showed that a reversible
measurement could in principle be made, so that Brillouin’s original argument was
wrong – measurement does not necessarily produce any entropy. However, to truly
complete the thermodynamic cycle, the demon has to erase the information he
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Figure 6. The one-particle Maxwell demon apparatus as envis-
aged by Bennett [6, 7]. An explanation is given in the text.

obtained about the location of the gas molecule. As we already discussed in sec-
tion 5.2, erasing that information produces entropy. It turns out that the work that
has to be done to erase the demon’s memory is at least as much as was originally
gained.

Figure 6 illustrates the one-particle Maxwell demon apparatus as envisaged by
Bennett [6, 7], which is a generalization of the engine proposed by Szilard [61].
On the left in row (A) is a gas container containing one molecule with a partition
and two pistons. On the right is a schematic representation of the phase space
of the system, including the demon. The state of mind of the demon can be in
three different states: He can know the molecule is on the right (state 0), on the
left (state 1), or he can be in the reference or blank state r, where he lacks any
information, and knows that he doesn’t know where the particle is. In the schematic
diagram of the phase space, shown on the right, the vertical direction indicates the
state of memory of the demon and the horizontal direction indicates the position
of the particle. In step (B) a thin partition is placed in the container, trapping the
particle in either the left or right half. In step (C) the demon makes a (reversible)
measurement to determine the location of the particle. This alters his state of mind
as indicated – if the particle is on the right, it goes into state 0, if on the left, into



28 F. ALEXANDER BAIS AND J. DOYNE FARMER

state 1. In step (D), depending on the outcome of the measurement, he moves either
the right or left piston in and removes the partition. In (E) the gas freely expands,
moving the piston out and thereby doing work. In state (E) it appears as if the
system has returned to its original state – it has the same volume, temperature and
entropy – yet work has been done. What’s missing? The problem is that in (E) the
demon’s mind has not returned to its original blank state. He needs to know that
he doesn’t know the position of the particle. Setting the demon’s memory back into
its original state requires erasing a bit of information. This is evident in the fact
that to go from (E) to (F) the occupied portion of the phase space is reduced by a
factor of two. This reduction in entropy has to be accompanied by production of
heat as a consequence of Landauer’s principle (see figure 4 and figure 5) – the work
that is done to erase a bit of information is greater than or equal to the work gained
by the demon. This ensures that the full cycle of the complete system respects the
second law after all.

This resolution of the paradox is remarkable, because it is not the acquisition of
information (the measurement) which is irreversible and thermodynamically costly,
but it is the process of erasure, which is both logically and thermodynamically
irreversible, that leads to the increase of entropy required by the second law. The
information comes for free, but it poses a waste disposal problem which is costly. It
is gratifying to see information theory come to rescue of one of the most cherished
physical laws.

5.5. The Gibbs paradox. The Gibbs paradox provides another interesting chap-
ter in the debate on the meaning of entropy. The basic question is to what extent
entropy is a subjective notion. In its simplest form the paradox concerns the mixing
of two ideal gases (kept at the same temperature and pressure) after removing a
partition. If it has been removed the gases will mix, and if the particles of the two
gases are distinguishable the entropy will increase due to this mixing. However, if
the gases are identical, so that their particles are indistinguishable from those on
the other side, there is no increase in the entropy. Maxwell imagined the situation
where the gases were initially supposed to be identical, and only later recognized
to be different. This reasoning led to the painful conclusion that the notion of ir-
reversibility and entropy would depend on our knowledge of physics. He concluded
that the entropy would thus depend on the state of mind of the experimenter and
therefore lacked an objective ground. It was again Maxwell with a simple ques-
tion who created an uncomfortable situation which caused a long debate. After
the development of quantum mechanics, it became clear that particles of the same
species are truly indistinguishable. There is no such thing as labeling N individual
electrons, and therefore interchanging electrons doesn’t change the state and this
fact reduces the number of states by a relative factor of N!. Therefore the conclu-
sion is that the entropy does not increase when the gases have the same constituent
particles, and it does increase when they are different.

However, the resolution of Gibbs paradox does not really depend on quantum
mechanics. Jaynes has emphasized that in the early works of Gibbs, the correct
argument was already given (well before the advent of quantum mechanics) [34].
Gibbs made an operational definition, saying that if “identical” means anything, it
means that there is no way an “unmixing” apparatus could determine whether a
particular molecule came from a given side of the box, short of having followed its










































































