Language Networks: Their Structure, Function and Evolution

Ricard V. Solé
Bernat Corominas Murtra
Sergi Valverde
Luc Steels

SFI WORKING PAPER: 2005-12-042

SFI Working Papers contain accounts of scientific work of the authors and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our external faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or funded by an SFI grant.

©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the author(s). It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may be reposted only with the explicit permission of the copyright holder.

www.santafe.edu
Language Networks: their structure, function and evolution

Ricard V. Solé,1,2 Bernat Corominas Murtra,1 Sergi Valverde,1 and Luc Steels3,4
1ICREA-Complex Systems Lab, Universitat Pompeu Fabra (GRIB), Dr Aiguader 80, 08003 Barcelona, Spain
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA
3Sony CSL Paris, 6 Rue Amyot, 75005 Paris
4Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels

Several important recent advances in various sciences (particularly biology and physics) are based on complex network analysis, which provides tools for characterising statistical properties of networks and explaining how they may arise. This article examines the relevance of this trend for the study of human languages. We review some early efforts to build up language networks, characterise their properties, and show in which direction models are being developed to explain them. These insights are relevant, both for studying fundamental unsolved puzzles in cognitive science, in particular the origins and evolution of language, but also for recent data-driven statistical approaches to natural language.

Keywords: Language, evolution, neural networks, complex networks, syntax

I. INTRODUCTION

The origins and evolution of language and the relations to neural development are still largely unknown, despite the increased speculation and theorising going on at the moment (1; 2). Language does not leave fossils (at least not directly), and so solid grounds to support a well-defined theory of the evolution of the language faculty are largely missing. And yet human language is clearly one of the greatest transitions in evolution (3) and maybe the trait that makes us most essentially different from other organisms on our planet (1).

All languages share some universal tendencies at different levels of organization: the phoneme inventories, the syntactic and semantic categories and structures, as well as the conceptualisations being expressed. At the same time there are also very deep differences between languages, and often universal trends are implicational: They are about the co-occurrence of features and not the features themselves (4). For example, if a language has an inflected auxiliary preceding the verb, then it typically has prepositions. There are also universal statistical trends in human languages, such as Zipf’s law (5), which is about the frequency with which common words appear in texts.

One of the most fundamental questions for a science of language is the origins of these universal trends. As with any other evolved system, there are many causal factors: There is first of all the nature of human embodiment and brain architecture. For example, the universal distinction between vowels and consonants is related to the structure of the human articulatory system, which can use vocal chords to produce vowels and strictures of the oral cavity for consonants (6). It has been argued that the brain features a kind of genetically determined language organ which strongly constrains the kinds of syntactic and semantic structures that we might expect in human languages (7; 8) and that language is subject to conditions imposed by other cognitive subsystems (8) or computational principles (9; 10), as well as memory limitations (particularly during language acquisition (11)).

A second causal factor is the nature of the tasks for which language is used, specifically communication. It is obvious that if language is to be adequate as a tool in communication, users will try to optimise communicative success and expressive power while minimising the cognitive and physical effort that they need to engage in. Various theories of language evolution explicitly take this to be the driving force in explaining the origins of grammatical features, such as expression of predicate-argument structure or perspective (12; 13). Other theories focus on the issue of transmission and argue that language is shaped largely so as to be able to be learnable by the next generation (14), or be genetically inheritable (15).

A third causal factor shaping universal trends comes from the family relations among languages (16). All Indo-European language have similar features, probably because they derived from a common ancestor, and they have continued to influence each other due to language contact. Many of the similarities we see among languages may therefore be a matter of historical contingency without any further deeper explanation.

In this paper we look at a fourth possible causal factor which is of a quite different nature. Over the past decade, it has become clear that complex dynamical systems exhibit a number of universal patterns both in their structure and in their evolution (17–19). Recently, important advances in graph theory, and specifically the theory of complex networks, have given a number of ways for studying the statistical properties of networks and for formulating general laws that all complex networks abide by, independently of the nature of the elements or their interactions (see box 1) (20; 21). Thus the study of ecological webs (22), software maps (23), genomes (24), brain networks (25; 26) or Internet architectures (27) all reveal common traits with characteristic efficiency and fragility (28). In this context, two main features seem
“But, you may say, we asked you to speak about women and fiction—what has got to do with one’s own? I will try to explain. When you asked me to speak about women and fiction I sat down on the banks of a river and began to wonder what the words meant. They might mean simply a few remarks about Fanny Burney; a few more about Jane Austen; a Tribute to the Brontës and a Sketch of Haworth Parsonage under snow; some witicism if possible about Mās Midford; a respectful allusion to George Elliot; a reference to Mrs Gaskell and one would have done. But at second sight the words seemed not so simple.”

- Virginia Wolf, A Room of One’s Own

FIG. 1 How to build language networks. Starting from a given text (a) we can define different types of relationships among words, including precedence relations and syntactic relations. In (b) we show them using blue and black arrows, respectively. In figures (c) and (d) the corresponding co-occurrence and syntactic networks are shown. Paths on network (c) can be understood as the potential universe of sentences that can be constructed with the given lexicon. An example of such path is the sentence indicated in red. Nodes have been coloured according to the total (in- and out-) word degree, highlighting key nodes during navigation (The higher the degree the lighter its colour). In (d) we build the corresponding syntactic network, taking as a descriptive framework dependency syntax (50), assuming as criterion that arcs begin in complements and end in the nucleus of the phrase; taking the verb as the nucleus of well-formed sentences. The previous sentence appears now dissected into two different paths converging towards “try”. An example of the global pattern found in a larger network is shown in (e) which is the cooccurrence network of a fragment of Moby Dick. In this graph hubs we have the, a, of, to.

to be shared by most complex networks, both natural and artificial. The first is their small world structure. In spite of their large size and sparseness (i.e. a rather small number of links per unit) these webs are very well connected: it is very easy to reach a given element from another one through a small number of jumps (29). In social networks, it is said that there are just six degrees of separation (i.e. six jumps) between any two randomly
chosen individuals in a country. The second is less ob-
vious, but not less important: these webs are extremely
heterogeneous: most elements are connected to one or
two other elements and only a handful of them have a
very large number of links. These hubs are the key com-
ponents of web complexity. They support high efficiency
of network traversal but are for the same reason their
Achilles heel. Their loss or failure has very negative con-
sequences for system performance, sometimes even pro-
moting a system’s collapse (30).

Language is clearly an example of a complex dynami-
cal system (31; 32). It exhibits highly intricate network
structures at all levels (phonetic, lexical, syntactic, se-
matic) and this structure is to some extent shaped and
reshaped by millions of language users over long peri-
ods of time, as they adapt and change them to their
needs as part of ongoing local interactions. The cogni-
tive structures needed to produce, parse, and interpret
language take the form of highly complex cognitive net-
works as well, maintained by each individual and aligned
and coordinated as a side effect of local interactions (33).
These cognitive structures are embodied in brain net-
works which exhibit themselves non-trivial topological
patterns (25). All these types of networks have their
own constraints and interact with the others generating
a dynamical process that leads language to be as we find
it in nature.

The hypothesis being explored in this article is that
the universal laws governing the organization and evolu-
tion of networks is an important additional causal factor
in shaping the nature and evolution of language (34).
Commonalities seen in all languages might be an indi-
cator of the presence of such common, inevitable gener-
ative mechanisms, independent on the exact path followed
by evolution. If this is the case, the origins of language
would be accessible to scientific analysis, in the sense
that it would be possible to predict and explain some of
the observed statistical universals of human languages in
terms of instantiations of general laws. Current results
within the new field of complex networks give support to
this possibility.

II. LANGUAGE NETWORKS

If network structure is a potential key for under-
standing universal statistical trends then the first step
is clearly to define more precisely what kinds of net-
works are involved. It turns out that there are several
possibilities (Fig 1). First of all we can look at the
network structure of the language elements themselves,
and this at different levels: semantics and pragmatics,
syntax, morphology, phonetics and phonology. Second,
we can look at the language community and the social
structures defined by their members. Social networks
can help understanding how fast new conventions
propagate or what language variation will be sustained
(35). Moreover, the network organization of individual
interactions has been shown to influence the emergence
of a self-consistent language (36).

Box 1. Measuring network complexity

Several key statistical measures can be performed on a
given language network as we illustrate here by focusing
on the co-occurrence of words. If $W = \{W_i\}$ is the set
of words ($i = 1, ..., N$) and $\{W_i, W_j\}$ is a pair of words, a
link can be defined based on a given choice of word-word
relation. The number of links of a given word is called
its degree. The total number of links is indicated by L, and
the average degree $<k>$ is simply $<k> = 2L/N$.

Path length: it is defined as the average minimal dis-
tance between any pair of elements.

Clustering coefficient: is the probability that two ver-
tices (e.g. words) that are neighbors of a given vertex
are neighbors of each other. It measures the relative
frequency of triangles in a graph.

Random graphs: they are obtained by linking nodes
with some probability. The most simple example is
given by the so called Erdös-Renyi (ER) graph for which
any two nodes are connected with some given probabil-
ity. For a random graph, we have very small clustering
(with $C \approx 1/N$) and $D \approx \log N/\log (k)$.

Small world (SW) structure: this networks have a
high clustering (and thus many triangles) but also a very
short path length, with $D \sim \log N$ as in random graphs.
A small world graph can be defined as a network such
that $D \sim D_{random}$ and $C \gg C_{random}$.

Degree distributions: They are defined as the fre-
cquency $P(k)$ of having a word with k links. Most com-
plex networks are characterized by highly heterogeneous
distributions, following a power law (scale-free) shape
$P(k) \sim k^{-\gamma}$, with $2 < \gamma < 3$.
partially reflect syntactic relations (47) and closeness between lexicalized concepts. Hence the study of such words in a sentence is considered irrelevant. It has been suggested that the hubs organize the semantic web in a categorical representation and might explain the ubiquity of polysemy across languages (43). In this context, although it has been argued that polysemy can be some type of historical accident (which languages should avoid) the analysis of these webs rather suggests that they are a necessary component of all languages. Additionally, as discussed in (48), the scale-free topology of semantic webs places some constraints on how these webs (and the previous ones) can be implemented in neural hardware. The high clustering found in these webs favours search by association, while the short paths separating two arbitrary items makes search very fast (52).

Co-occurrence networks. (Fig.1b,e) Spoken language consists of linear strings of sounds and hence the first type of network that we can build is simply based on co-occurrence. Two words are linked if they appear together within at least one sentence. Such graphs can be undirected or directed. In undirected graphs the order of words in a sentence is considered irrelevant. It has been used for example in (41). A more realistic approach is to consider the order in which words co-occur and represent that in directed graphs (44; 46). Word order could partially reflect syntactic relations (47) and closeness between lexicalized concepts (48). Hence the study of such networks provides a glimpse of the generative potential of the underlying syntactic and semantic units. and we find hubs for words with low semantic content but important grammatical functions (such as articles, auxiliaries, prepositions, etc.). They are the key elements in sustaining an efficient traffic while building sentences. In figure 1C and example of such network is shown, with nodes colored proportionally to their degree. In these webs degree is directly related to frequency of appearance. Analysis of these networks in children, during language acquisition reveal that a trade-off is present in terms of a balance between lexicon size and flexibility: Children with smaller lexicon display a network with higher connectivity. Moreover, the ontogeny of these webs is well described by looking at the emergence of hubs. Content words such as *mama* or *juice* are important at early stages but fade out in later stages as function words (particularly *you*, *the*, *a*) emerge together with grammar (46).

Syntactic networks. (Figure 1c,d) A second type of network focuses on syntax (42). They can be built up based on constituent structures, where units form higher level structures which in turn then behave as units in other structures. Constituent structures are usually described as the product of fundamental operations like *merge* (49) or *unify* (2). Dependency grammar (50) is a useful linguistic framework to build up syntactic networks because it retains the words themselves as fundamental nodes in a graph (Figure 1c). Many of these networks could be extracted automatically using techniques from data-driven parsing (51). Here hubs are functional words but we can see that the in- and out-degrees are different from the previous web based on precedence relations.

Semantic networks. (Fig.2) Semantic networks can be built starting from individual words that lexicalise concepts and by then mapping out basic semantic relations such as isa-relations, part-whole or binary opposition. They can potentially be built up automatically from corpus data (43; 48; 52–54). The topology of these networks reveals a highly efficient organization where hubs are polysemous words, which have a profound impact on the overall structure. It has been suggested that the the hubs organize the semantic web in a categorical representation and might explain the ubiquity of polysemy across languages (43). In this context, although it has been argued that polysemy can be some type of historical accident (which languages should avoid) the analysis of these webs rather suggests that they are a necessary component of all languages. Additionally, as discussed in (48), the scale-free topology of semantic webs places some constraints on how these webs (and the previous ones) can be implemented in neural hardware. The high clustering found in these webs favours search by association, while the short paths separating two arbitrary items makes search very fast (52). Many of these networks have now been analysed and they exhibit non trivial patterns of organization - see box 1- . Cooccurrence, syntactic, and semantic networks exhibit scaling in their degree distributions and they display Small World effects with high clustering coefficients and short path lengths between any given pair of units (41–43; 48), which remarkably are the same universal features as found in most of the natural phenomena studied by complex network analysis so far (24; 27; 28).
TABLE I Statistical universals in language networks. The data shown are based on different studies involving different corpuses and different languages (41–44; 48). The small world character of the webs appears reflected in the short path lengths and the high clustering. Here we compare the value of C with the one expected from a purely random graph Crand. The resulting fraction C/Crand indicates that the observed clustering is orders of magnitude larger than expected from random.

This is highly relevant for two reasons. First it shows that language networks indeed exhibit certain significant statistical properties, confirming the discovery of a new type of universals in human languages similar to the universals found in (statistical) physics. Second, it strengthens the case that these statistical properties are a consequence of universal laws governing all types of evolving networks, independent of the specific cognitive and social processes that generate them. In the next section, we explore this topic further.

III. NETWORK GROWTH AND EVOLUTION

What could the structural principles for language networks be? Language networks are clearly shaped at two different scales (at least). The first is linked to language acquisition by individuals, and the second to its emergence within human populations. The ontogeny of language is strongly tied to underlying cognitive potentials in the developing child. But it is also a product of the exposure of individuals to normal language use (without formal training). On the other hand, the child (or adult) is not isolated from other speakers. The emergence and constant change in language needs to be understood in terms of a collective phenomenon (32) with continuous alignment of speakers and hearer to each other’s language conventions and ways of viewing the world (33). Although the two previous views seem in conflict, they are actually complementary. It depends on what level of observation is considered. Without a social context in which a given language is sustained through invention, learning and consensus, no complex language develops. But unless a minimal neural substrate is present, it is not possible for language users to participate in this process.

The next question is: What is the nature of the shaping that affects the statistical properties of network growth? This question is still wide open and some successful ap-
projects based on simple rules of network growth have been presented (48; 55). An interesting approach, based on constraints operating on communication and coding, can be defined in terms of two forces: one that pushes towards communicative success, and another one that pushes towards least effort, a principle already used by Zipf (5) and Simon (56). The first step is to define idealised simpler models of communicative interactions in the form of language games (57), possibly instantiated in embodied agents (58). In the simplest language game (usually called the Naming Game) a mapping between signals (words) and objects of reference is maintained by each agent (Box 2). This map defines a bipartite network (Fig.4). The most successful communication arises obviously when the individual lexicons take the form of the same one-to-one mapping between names and objects. Many simulations and theoretical investigations have now shown that this state can be rapidly reached when agents attempt to optimize their mutual understanding and adjust weights between signals and objects (37).

Box 2. Word-meaning association networks for Naming Games

Let us consider an external world defined as a finite set of \(m \) objects of reference (i.e. meanings):

\[
R = \{ R_1, ..., R_i, ..., R_m \}
\]

and the previous set words (signals) now used to label them \(W = \{ W_i \} \). If a word \(w_i \) is used to name a given object of reference \(R_j \), then a link will be established between both. Let us call \(A = (a_{ij}) \) the matrix connecting them, where \(1 \leq i \leq n \) and \(1 \leq j \leq m \). Here \(a_{ij} = 1 \) if the word \(a_i \) is used to refer to \(R_j \) and zero otherwise. A graph is then obtained, the so-called lexical matrix, including the two types of elements (words and meanings) and their links. This is known as a bipartite graph. An example of such graph is shown in figure 3 where \(A \) reads:

\[
A = \begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

This matrix enables the computation of all relevant quantities concerning graph structure.

Next, we not only consider communicative success but also the cost of communication between hearer and speaker in order to connect lexical matrices as studied in language games with the kind of statistical regularities made visible by language network analysis. As noted by George Zipf the conflict between speaker and hearer might be explained by a lexical tradeoff which he named the *principle of least effort* (5). This principle can be made explicit using the lexical matrix, when the relative efforts of the hearer and the speaker are properly defined ((13). If we indicate by \(E_s \) and \(E_h \) the speaker and hearer’s efforts, respectively, it is possible to assign a weight to their relative contribution by means of a linear function:

\[
\Omega(\lambda) = \lambda E_s + (1 - \lambda) E_h
\]

where \(0 < \lambda < 1 \) is a parameter. Effort is defined in terms of information theoretic measures (59). For \(E_s \), the number of different words in the lexicon can be used (the signal entropy), whereas for \(E_h \), the ambiguity for the hearer. The minimal effort for the speaker is obtained when a single word refers to many objects (Fig.4a) but this is maximal effort for the hearer (most ambiguous lexical network). The opposite case is indicated in Fig.4c. It provides minimal effort for the hearer, because the speaker is using one word for each object, but that means maximal effort for the speaker.

By tuning \(\lambda \), we can move from one case to the other. What happens in between? Interestingly, a sharp change occurs at some intermediate \(\lambda_c \) value, where we observe a rapid shift from no-communication to one-to-one networks. This is a phase transition similar to the ones found in physics. At this phase transition (Fig.4b) we recover several quantitative traits of human language. The first is Zipf’s law: if we map the number of links of a word to its frequency (as it occurs in real language) the previous scaling relation is recovered at close to the critical \(\lambda_c \) point. Such emergence of scaling close to critical points shares a number of characteristics with scenarios observed in physical systems under conflicting forces (19). An additional finding is that the bipartite graph with a word frequency distribution following Zipf’s law can also impose strong constraints on syntactic networks (60; 61). It is worth mentioning that the presence of a gap has immediate consequences for understanding the origins of the unique character of human language compared to other species: a complexity gap in the patterning of word interactions would be required should be overcome in order to achieve symbolic reference.

IV. DISCUSSION

This article argued that there are statistical universals in language networks, which are similar to the features found in other ‘scale free’ networks arising in physics, biology and the social sciences. This observation is very exciting from two points of view. First, it points to new types of universal features of language, which do not focus on properties of the elements in language inventories as the traditional study of universals (e.g. phoneme inventories or word order patterns in sentences) but rather on statistical properties. Second, the pervasive nature of these network features suggests that language must be subject to the same sort of self-organization dynamics than other natural and social systems and so it makes sense to investigate whether the general laws governing...
complex dynamical systems apply to language as well and what aspects of language they can explain. We briefly discussed an example of such an effort for the most simplest form of language, namely names for objects.

The study of language networks and the identification of their universal statistical properties provides an tentative integrative picture. The previous networks are not isolated: In figure 6 we summarize some of the key relations, in which language networks define a given scale within a community of interacting individuals. The changes in lexicon and grammar through time are tied to social changes. A common language is displayed by any community of speakers, but it is far from a stable entity. Semantic and syntactic relations are at the basis of sentence production and they result from evolutionary and social constraints. Although we have a limited picture of possible evolutionary paths, the presence of language universals and the use of mathematical models can help elucidate them. On the other hand, the ontogeny of these networks offers an additional information that can also help distinguishing the components affecting the emergence of human language and the role played by genetic versus cultural influences.

The explanation of universal statistical network features is even more in its infancy. There are several reasons for this. First of all the explanation of these features generally requires that we understand the forces that are active in the building of the networks. This means that we must adopt an evolutionary point of view in the study of language, which contrasts with the dominating structuralist trend in the 20th century focusing only on the synchronic description of language. Second, as Herbert Simon already argued (56) p.440, the ubiquity of certain statistical distributions, such as Zipf’s law, and the many mechanisms that can generate them means that they do not completely capture the fine-grained uniqueness of language.

Clearly, the study of language dynamics and evolution needs to be a highly multidisciplinary effort (62). We have proposed a framework of study that helps to understand the global dynamics of language and brings language closer to many other complex systems found in nature, but much remains to be done and many disciplines within cognitive science will have to contribute.

Box 4. Questions for future research

- How do language networks grow through language acquisition?
- Are there statistical differences among networks for different languages?
- Can a typology of languages be constructed where the genealogical relations are reflected in network features?
- How do general principles discovered in statistical physics play a role in the topology of language networks?
- Can artificial communities of agents develop languages with scale-free network structures?
- How are language networks modified through aging and brain damage?
- Is there a link between cortical maps involved in language and observed language networks?

Acknowledgments

The authors would like to thank the members of the Complex Systems Lab for useful discussions. RVS and...
FIG. 6 The network of language networks. The three classes of language networks are indicated here, together with their links. They are all embedded within embodied systems belonging themselves to a social network. The graph shown here is thus a feedback system in which networks of word interactions and sentence production shape, and are shaped by, the underlying system of communicating agents. Different constraints operate at different levels. Additionally, a full understanding of how syntactic and semantic networks emerge requires an exploration of their ontogeny and phylogeny.

BCM thank Murray Gell-Mann, David Krakauer, Eric D. Smith, Constantino Tsallis for useful discussions on language structure and evolution. This work has been supported by grants FIS2004-0542, IST-FET ECAGENTS project of the European Community founded under EU R&D contract 011940, IST-FET DELIS project under EU R&D contract 001907, by the Santa Fe Institute and the Sony Computer Science Laboratory.

References

