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Abstract

The state-space of a discrete dynamical network is connected into basins of attraction, mathematical
objects that can be computed and shown as graphs for small networks. Multiple attractors explain how
the same genetic regulatory network can maintain different stable patterns of gene activation, the cell
types in multi-cellular organisms. Ideas of modularity suggest that the overall genetic network is actually
made up of semi-independent sub-networks. Each sub-network also settles into one of a range attractors
according to its current state, which if perturbed can cause the dynamics to jump to alternative attractors.
A network’s “memory”, its ability to categorize, is provided by its separate basins of attraction, and also
by the topology of the trees and sub-trees rooted on each attractor.

Based on computer simulations of cellular automata and random Boolean networks, using the au-
thors software Discrete Dynamics Lab[23], this paper describes how basins of attraction might provide a
conceptual framework for biomolecular networks.

1 Introduction

Some of the outstanding questions in genetics, evolution, evolvability and development, including notions of
modularity, will involve unraveling and comprehending networks of interacting elements.

In differentiation and gene regulation, feedback makes the one way signaling pathway paradigm inade-
quate. It has been superseded by a dynamical network approach. The dynamics manifests itself in two ways.
Firstly by the changing pattern of activation on network elements (genes, or neurons in a neural network).
Secondly by the dynamics of the network, how the network architecture itself changes, its set of elements
and how they connect, driven by evolution, development and learning.

Another issue is the quality of different network architectures in terms of connectivity, and also the
updating logic. Of the possible types of network architectures and logical schemes, has nature selected
some tiny subset? Are there characteristic biases which affect dynamics? Probably. This kind of ensemble
approach to biological networks might complement the search for the detailed biomolecular interactions.

Recent studies have shown that network topologies in real cell signaling and metabolic networks share
some universal features[1, 8, 16]. The connectivity appears to be “scale-free”, where link frequency (the
number of connections at each node) roughly follows a power law distribution. Most elements have few
connections, and a few are highly connected. The “small world” average distance between pairs of elements
depends on those few highly connect nodes, which if disconnected can break the network into separate
components. Similar topologies have been found in many different contexts, both natural and artificial,
ranging from ecosystems to the world wide web. Are gene regulatory networks of this type? Or are they
broken into modules, small semi-independent sub-networks, responsible for useful adaptations and functions
which are conserved over long stretches of the evolutionary tree[12]. Note that each module itself could also
have a scale-free topology. This question goes to the heart of modularity and evolvability. Figure 1 illustrates
these two types of hypothetical network. Although their link frequency profiles are similar (figure 2), their
dynamics turn out to be very different. Results described in section 8 indicate that the modular network
has more basins of attraction, which are relatively more stable, than the fully connected network.

∗To appear in ”Modularity in development and evolution”, eds. G. Schlosser and G. P. Wagner, Chicago University Press.
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Figure 1: Hypothetical networks of interacting elements (size n=100) with an approximate power-law distribution
of connections, both inputs (k) and outputs, which are represented by directed links (with arrows). Nodes are scaled
according to k and average k ' 2.2. left: A fully connected network. center: A network made up of five weakly
inter-linked n=20 sub-networks or modules. right: A detail of the top right sub-network. These are examples of
random Boolean networks defined in section 4.

Figure 2: Histograms of link frequency (y axis) against link size (x axis), for inputs+outputs, in the networks in
figure 1. The fully connected network (left), and modular network (right), have a similar link frequency profile.
However their dynamics are very different, as described in section 8.

Dynamical networks in biology are found wherever one cares to look, from the brain to ecology. In the
context of modularity in evolution and development the networks in question are genetic regulatory networks
in cell differentiation, protein networks in cell signaling, networks of cells in tissues and organs, and of organs
in the body. These networks overlap, making super-networks, and break down into sub-networks through
many levels. The finer details of signaling pathways and network fragments are being discovered, both
by painstaking experiment on Drosophila and other organisms[17], and by the new micro-array methods
providing floods of data on the dynamics of gene expression patterns in development. There appears to be
an urgent need for theoretical approximations and concepts to keep pace with the data[13].

Can methods from complex systems, network theory and discrete dynamics contribute? Cellular au-
tomata have provided models of pattern formation in biological organisms[2]. Boolean networks have pro-
vided models of genetic networks underlying cell differentiation based on basins of attraction[9, 5, 14, 26].
Basins of attraction can be computed and portrayed[21, 22, 23], revealing the global dynamics on small
networks. Could this provide a conceptual framework for networks in biology?

Discrete dynamical networks, as abstract systems, manifest ubiquitous emergent properties which tran-
scend any particular context, studied for their own sake, not just as models of something else. This paper
will outline some of these properties for cellular automata, and for random Boolean networks, which are
more general and probably have more biological relevance. The key emergent property is that the dynamics
on the networks converge, thus fall into a number of “basins of attraction”, which hierarchically categorize
patterns of activation, “state-space”, creating memory as a function of the network architecture. High con-
vergence implies order, low convergence implies disorder or chaos. The most interesting phenomena occur
at the transition, sometimes called the “edge of chaos”[11].

Basins of attraction sum up the network’s global dynamics, analogous to Poincaré’s “phase portrait”
which provided powerful insights in continuous dynamics. For small systems, its possible to compute and
draw basins of attraction, and measure their convergence and stability to perturbation. Analogous basins of
attraction can be imagined in biological networks. That these networks are very simple might be a strength
rather than a weakness when extrapolating the ideas to real systems, by the argument that if the simple
network has particular emergent properties, a real biological network, infinitely more subtle and complex,
should be capable of that at least. Also, a biologically faithful model might become so elaborate as to mask
the underlying phenomena that one seeks to capture, which might be clear in a simple model.
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2 Basins of Attraction

For a network size n, an example of one of its states B might be
1010 . . . 0110. State-space is made up of all 2n states, the space of
all possible bitstrings or patterns.

Part of a trajectory in state-space, where C is a successor of B, and
A is a pre-image of B, according to the dynamics on the network.

The state B may have other pre-images besides A, the total is the
in-degree. The pre-image states may have their own pre-images
or none. States without pre-images are known as garden-of-Eden
states.

Any trajectory must sooner or later encounter a state that occurred
previously - it has entered an attractor cycle. The trajectory lead-
ing to the attractor is a transient. The period of the attractor is
the number of states in its cycle, which may be just one - a point
attractor.

Take a state on the attractor, find its pre-images (excluding the
pre-image on the attractor). Now find the pre-images of each pre-
image, and so on, until all garden-of-Eden states are reached. The
graph of linked states is a transient tree rooted on the attractor
state. Part of the transient tree is a subtree defined by its root.

Construct each transient tree (if any) from each attractor state.
The complete graph is the basin of attraction. Some basins of
attraction have no transient trees, just the bare “attractor”.

Now find every attractor cycle in state-space and construct its
basin of attraction. This is the basin of attraction field containing
all 2n states in state-space, but now linked according to the dy-
namics on the network. Each discrete dynamical network imposes
a particular basin of attraction field on state-space.

Figure 3: State-space and basins of attraction.

Figure 3 provides a summary of the idea of state-space and basins of attraction in idealized networks,
sometimes called “decision making” networks. The dynamics depends on the connections and update logic
of each element, which “decides” its next value based on the values of the few elements that provide its
inputs, which might include self-input. The result is a complex web of feedback making the dynamics
difficult to treat analytically, despite the extreme simplicity of the underlying network. In fact, although
the dynamics are deterministic, the future is in general unpredictable. Understanding these systems relies
chiefly on computer simulation.

A more precise definition of the network architecture is given in later sections. For the moment we will
define just some essential concepts and properties, and also some terminology. At a given moment, each
element in the network has a value, for simplicity 0 or 1 in a binary network, though the same arguments apply
to a multi-state network. The pattern of 0s and 1s across the whole network is the network’s configuration,
pattern of activation, or “state” at that moment in time, which can be represented as a bit-string. Time
proceeds in discrete steps, “time-steps”. At each time-step, all signals transmitted by network links are
processed simultaneously, that is synchronously, in parallel. This transforms a state at time-step t to another
state at time-step t + 1, then another state at t + 2 and so on; the system is iterated. This process
is deterministic, there is just one successor to each state, and continues indefinitely, while the network
architecture itself (its wiring scheme and rule scheme) stays the same. That is, the source of the inputs (the
“wiring”), and the logical function (the “rule”) that each element executes on its inputs to update its value,
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Figure 4: The basin of attraction field of the n=20 sub-network shown in detail
in figure 1 (right). The rules (input logic) were assigned at random. State-
space (size 220

' 1.05 million) is partitioned into three basins of attraction. The
attractor states are shown as 5x4 bit patterns. The table and diagram on the
right show the probability of jumping between basins due to one-bit perturbations
of their attractor states. P = attractor period, J = possible jumps (P × n), and
V% is the basin “volume” as a percentage of state-space. For example in basin
1, P=5, J=100 possible jumps, 15 of these jump to basin 2, and 85 back to itself,
so basin 1 is relatively stable. Basin 3 has relatively few jumps back to itself so
in unstable, it is also unreachable from the other basins. The diagram below the
table, the “metagraph” (see section 5), shows the same data graphically. Node
size reflects basin volume, link thickness percentage jumps, arrows the direction,
and the short stubs self-jumps. The fraction of garden-of-Eden states in all three
basins is 0.999+ indicating high convergence and order.

1 2 3 P J V%

1: 85 15 . 5 100 61.78
2: 48 12 . 3 60 28.57
3: 32 6 2 2 40 9.65

do not change. The sequence of states is called a “trajectory”. A “space-time” pattern representation of the
dynamics is made by placing one-dimensional bit-strings, representing successive states, one below the other
(time proceeds down) as in figures 5, where 0s and 1s are shown as white and black dots. This demonstrates
how the pattern evolves from an initial state. It might stabilize, become periodic, chaotic, or show some
interesting pattern formation.

Because the network is finite, we can define a “state-space” as the space of all possible bit-strings or states.
There are 2n unique states for a binary network of size n. We can say that a trajectory started from some
initial state moves through its state-space. Because the state-space is finite, sooner or later the trajectory
must encounter a state that occurred before. When this happens, because the system is deterministic, the
trajectory must become trapped in a perpetual cycle of of repeating states, a state cycle, or “attractor”.
The number of time-steps between the repeats of a state is the attractor period, which could be just one, a
“point attractor”, where the space-time pattern has completely stabilized. Conversely, a chaotic space-time
pattern might have a very large attractor period.

Each state has just one successor, but what about a state’s immediate predecessors? It turns out that a
state can have any number of these, called “pre-images”, including none. The number of pre-images a state
has is its “in-degree”. The existence of in-degrees other than exactly one, and the existence of states outside
the attractor, are conditions that must imply each other, otherwise the basin would be just a bare attractor
cycle. States outside an attractor lie on trajectories that flow to the attractor, known as “transients”. A
state with zero in-degree is known as a “garden-of-Eden” state, and except for highly chaotic systems, most
states, almost all for large networks, turn out to be garden-of-Eden states.

Some time ago I invented algorithms for finding the pre-images of a state directly, without having to
exhaustively test the entire state-space[21, 22]. This allowed the efficient backwards tracing and recon-
struction of the branching transients that flow into attractors, the “transient tree”, where the “leaves” are
garden-of-Eden states. Conversely, the flow towards attractors is convergent, like a river. High convergence
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implies order in space-time patterns; short, bushy, highly branching transient trees, with many leaves and
small attractor periods. Conversely, low convergence implies chaos in space-time patterns; long, sparsely
branching transient trees, with few leaves and long attractor periods. Figure 5 illustrates this, showing a
transient sub-tree for three representative cellular automata rules, for order, complexity and chaos, and their
corresponding space-time patterns. A simple measure of convergence, taken on a basin of attraction field,
a single basin, a subtree, or on just part of a subtree for larger systems, is the density of garden-of-Eden
states, and its rate of increase of with n. A more comprehensive measure is the in-degree frequency[25, 27].

The set of transient trees rooted on an attractor cycle is a “basin of attraction”. The dynamics of the
network connects state-space into a number of distinct basins, the “basin of attraction field”, representing
the systems global dynamics, as in figures 4, 8 and 10. State-space has now been partitioned, categorized,
by the dynamics of the network into a number of separate basins of attraction. In addition the root of each
subtree within a transient tree forms a sub-category. The precise way that states are linked into a basin of
attraction field depends on the details of the network architecture.

Sub-trees and basins of attraction are portrayed as state transition graphs, vertices or nodes representing
states are connected by directed edges. The direction of edges (i.e. time) flows inward from garden-of-Eden
states to the attractor, and then clockwise around the attractor cycle, as indicated in figures 8 and 10. In
the graphic convention[21, 23], the length of edges decreases with distance away from the attractor, and the
diameter of the attractor cycle approaches an upper limit with increasing period.

3 Cellular automata

Ordered rule 01dc3610 Complex rule 6c1e53a8 Chaotic rule 994a6a65

Figure 5: Ordered, complex and chaotic dynamics of one-dimensional cellular automata are illustrated by the
space-time patterns and subtrees of three typical k=5 rules (shown in hex, see section 4). The bottom row shows the
space-time patterns from the same random initial state. The bit-strings (n=100) of successive time-steps (represented
by white and black dots) are shown horizontally one below the other, i.e. time proceeds down. Above each space-time
pattern is a typical sub-tree for the same rule. In this case n=40 for the ordered rule, and n=50 for the complex and
chaotic rules. The root states were reached by first iterating the system forward by a few steps from a random initial
state, then tracing the subtree backwards. Note that the convergence in the sub-trees, their branchiness or typical
in-degree, relates to order-chaos in space-time patterns, where order has high, chaos low, convergence.
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Cellular automata are networks whoseelements form a regular lattice, possibly in one, two or three dimen-
sions, with inputs from nearest neighbors (and possibly next nearest etc), and homogeneouslogic. In fact
the lattice is a consequenceof the input connections. Cellular automata can be seenas a special case,a
subset, of the more general system, random Boolean networks, and there are a variety of hybrid systems
between the two. Cellular automata have provided models in computational and physical systems,and in
biological systems, such as pattern formation, for example strip es on mammalian coats and patterns on
nautilus shells[2], and in ecology, for example modeling forest ¯res. Large scalesurfacepattern can emerge
from just local interactions, basedon reaction-di®usionas in 7(left) and other mechanisms[20].

Another type of pattern formation which providesa striking exampleof self-organizationis the emergence
of coherent interacting structures, sometimesknown as \particles" or \gliders"[3 ], as in ¯gures 6 and 8(top).
Only a small fraction of CA rules generategliders. They are classi¯ed as complex, in contrast to ordered or
chaotic[19]. Gliders can be embedded within a uniform or periodic background, and propagate at various
velocities up to the system's \sp eed of light" set by the neighborhood diameter. Colliding gliders can
annihilate, pass through each other, or produce new gliders. Compound gliders may emergemade up of
sub-gliders re-colliding periodically, which can combine into yet higher order structures, and the process
could unfold without limit in large enoughsystems. Oncegliders have emerged,cellular automata dynamics
can be described at a higher level, by glider collision rules as opposedto the underlying cellular automata
rules[27].

Figure 7 shows examplesof emergent patterns in two and three dimensional cellular automata. Figure
8 shows a large space-timepattern of a one dimensional complex cellular, and also the basin of attraction
¯eld of the samerule for a small system. Note that the basin symmetriescan be explained by the regularity
of cellular automata architecture [21]. In random Boolean networks these symmetries, and also gliders,
are absent. Glider dynamics is said to occur at a phasetransition in rule-spacebetween order and chaos,
relative to static rule parameters[11, 27]. Measureson space-timepatterns allow rule spaceto be classi¯ed
automatically, and complex rules to be identi¯ed[27 ]. There is a sensehere of modularit y. In caseswhere
a bio-cellular or biomolecular substrate approximates a regular geometric lattice with local interactions,
cellular automata might provide useful models.

(a)7e8696de (b)89ed7106 (c)89ed7106 (d)b51e9ce8 (e)b51e9ce8

Figure 6: Gliders, \glider guns" (which generate sub-gliders), and compound gliders in k=5 1d cellular automata.
(c) is a compound glider made up of two independent gliders locked into a cycle of repeating collisions. (d) is a glider
with a period of 106 time-steps. (e) is a compound glider-gun.

2d 100x100 triangular grid 3d 20x20x20

Figure 7: Examples of emergent pat-
terns in 2d and 3d cellular automata. left:
an evolved time-step of a 2d cellular au-
tomaton on a k=7 triangular lattice with
a reaction-di®usion rule. right : a time-
step of a 3d nearestneighbor (k=7) cellular
automaton with a randomly selected rule,
starting from a single central 1. View this
as if looking up into a transparent box.
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