Two Regimes in the Frequency of Words and the Origins of Complex Lexicons: Zipf’s Law Revisited

Ramon Ferrer Cancho
Ricard V. Solé

SFI WORKING PAPER: 2000-12-068

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our external faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or funded by an SFI grant.

©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the author(s). It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may be reposted only with the explicit permission of the copyright holder.

www.santafe.edu
Two regimes in the frequency of words and the origins of complex lexicons: Zipf’s law revisited

Ramon Ferrer Cancho* and Ricard V. Solé*†

* Complex Systems Research Group, FEN-UPC, Campus Nord, B4-B5, Barcelona 08034 SPAIN
† Santa Fe Institute, 1399 Hyde Park Road, New Mexico 87501, USA

Zipf’s law states that the frequency of a word is a power function of its rank. The exponent of the power is usually accepted to be close to -1.1. Great deviations between the predicted and real number of different words of a text, disagreements between the predicted and real exponent of the probability density function and statistics on a big corpus, make evident that word frequency as a function of the rank follows two different exponents, ≈ -1.1 for the first regime and ≈ -2.2 for the second. The implications of the change in exponents for the metrics of texts and for the origins of complex lexicons are analyzed.

1. Introduction

The Zipf’s law for words, by G. K. Zipf [1], is one of the most fundamental and popular achievements of quantitative linguistics and the origin of a wide range of hypothesis about its origin [2]. Despite its apparent robustness, Zipf’s law is an empirical observation and not a law in a rigorous sense [3,4]. In this context, Zipf’s law has been assumed but not explained in recent models for the evolution of syntactic communication [5] and is an obvious ingredient for any theory of language evolution.

The same law can also be presented as probability density function:

$$Q(j) \propto j^{-\beta}$$

where $Q(j)$ is the probability that a word is present j times in a text.

We can relate the rank with the probability density function. Let us denote by $m_n = T Q(n)$ the number of words having population n, where T is the total number of word in the sample. Then, the rank is given by

$$R(n) = \int_n^\infty m_n' \, dn'$$

and the most frequent word has $R = 1$, the second most frequent word has $R = 2$, and so on, for decreasing values of n in the integral. Eq. 3 establishes a general relation between the rank of an event in the sample and the probability distribution according to the event frequency. Substituting $R \propto n^{-1/\alpha}$ (obtained from Eq. 1) and Eq. 2 in Eq. 3 we immediately get $n^{1-\beta} \propto n^{-1/\alpha}$, from where

$$\alpha = \frac{1}{\beta - 1}$$

and

$$\beta = \frac{1}{\alpha} + 1$$

If $\alpha = 1$ then β should be 2.

It can be observed in the plots of [1,3,6] that the law provides a good fit for the smallest ranks (acknowledging some deviations at the very beginning of the ordering discussed in [6,4]) but no attention has been paid to the deviations in the tail. We will show that such deviations are much more important than expected.

2. Disagreements

One of the desirable properties of a law (as it happens with common physical laws) is to allow for accurate predictions.
The predicted number \(n \) of different words of a text formed by \(T \) words, can be obtained by applying the Zipf's law and solving the following equation

\[
\frac{1}{T} = p_1 n^{-\alpha}
\]

(6)

where \(1/T \) is the lowest probability that can be achieved by a word in a text of size \(T \). From Eq. 6 we obtain

\[
n = [T p_1]^{1/\alpha} \approx T p_1
\]

(7)

We processed all the \(T \approx 9 \cdot 10^7 \) words of the British National Corpus (BNC) a corpus of modern English, both spoken (10%) and written (90%). BNC is a collection of text samples (generally not longer than 45,000 words). It is syncronic (it includes imaginative texts from 1960, informative texts from 1975), general (not specifically restricted to any particular subject field, register or genre), monolingual (it comprises text samples which are substantially the product of speakers of British English) and mixed (it contains both examples of both spoken and written English).

![Graph showing the probability of a word as a function of its rank i, P(i). The first and the second power law decays have exponent \(\alpha_1 = 1.01 \pm 0.02 \) and \(\alpha_2 = 1.92 \pm 0.07 \), respectively (\(r > 0.99 \) in both cases). Statistics on the whole BNC \(T \sim 9 \cdot 10^7 \) words, \(n = 588,000 \).](image)

We obtained \(P(1) = 0.0601046 \), \(\alpha = 1 \) (linear regression on the rank-ordering log-log plot). Unfortunately, \(n = 588,000 \) was very far from \(\tilde{n} \approx 5.6 \cdot 10^6 \). The big deviation observed could be attributed to a poor statistics or a bad fitting of the parameters intervening in the prediction, \(p_1 \) and \(\alpha \). We will show that there is a deeper reason.

We computed the probability density function of the frequency (in number of occurrences) of the BNC. More precisely, the probability \(P(k) \) that a word occurs \(k \) times in the corpus. The left half of the plot, shown in Figure 2, revealed a well-defined power law relationship between \(Q(j) \) and \(j \) whose exponent was \(\beta = 1.5 \). The value obtained was 1.6, but removing the two first points, corresponding to the most uncommon words, and thus corresponding to the frequencies being the most difficult to estimate, 1.5 was obtained (linear regression, \(\beta = 1.52 \pm 0.008 \)). In contrast, Eq. 5 predicted \(\beta = 2 \). In addition, the plot of the probability density function in Figure 2 was specially clear. A question of bad statistics or fitting again?

III. RETHINKING THE LAW

A more careful sight of the rank ordering plot on our data revealed the existence of two different exponents in the same rank ordering plot (Figure 1). \(\alpha_1 = \alpha \approx 1 \) and \(\alpha_2 \approx 2 \) seem appropriate for ranks \(i < N \in (10^3, 10^4) \) and \(i \geq N \), respectively. Thus, the frequency of words becomes a double law, the initial Zipf's law and a more sloping decay,

\[
P(i) = \begin{cases}
 p_i i^{-\alpha_1} & \text{if } i < N \\
 N^{-\alpha_2} p_{N i^{-\alpha_2}} & \text{otherwise}
\end{cases}
\]

(8)

where \(p_N \) is the probability of the \(n \)-th most frequent word. It can also be obtained from Eq. 1 and be

\[
\frac{1}{p_1 N^\alpha} \approx \frac{n}{N}
\]

Let \(x = [T p_1(1)]^{1/\alpha_1} \). According to 8 and being \(1/T \) the smallest probability, the number of different words predicted is:

\[
\tilde{n} = \begin{cases}
 [T p_1]^{1/\alpha_1} & \text{if } T p_N < 1 \\
 N [T p_N]^{1/\alpha_2} & \text{otherwise}
\end{cases}
\]

(9)

where \(p_{1,000} = 1.06292 \cdot 10^{-4} \), \(p_{5,000} = 1.71864 \cdot 10^{-5} \) and \(p_{6,000} = 1.34702 \cdot 10^{-5} \).

The value of \(\tilde{n} \) calculated through Eq. 9 is 213,570, much closer to the real value. Figure 3 shows the value of \(n, \tilde{n} \), obtained through Eq. 7 and 9; \(N = 6,000 \) and Ebeling/Pöschel approximation [7] as a function of \(T \).

IV. DISCUSSION

The classic \(\alpha = 1 \) can be attributed to a superficial look on small-sized texts in which deviations in the tail of the distribution (of the rank-ordering plot) were attributed to finite size effects instead of a different exponent. Previous work on English was performed on relatively small texts, i.e. 260,430 words [1], 59,498 words [3], 20,000 words [6], far from the \(\sim 9 \cdot 10^7 \) words of the BNC.

For long texts, the number of different words is mainly due to second expression in Eq. 9. A relation \(n \propto T^{-1/\alpha_2} \) was previously shown in [7] More precisely, \(n = 22.87^{-0.46} \).
The two observed exponents divide words in two different sets: a kernel lexicon formed by \(\approx N \) versatile words and an unlimited lexicon for specific communication. We suggest that the size of the kernel lexicon is related with constraints of capacity of human brain. As a matter of fact, there is evidence of a relationship between characteristic size limitations and inflection points of power law exponents [8]. The change of the exponent of the power law decay of the mutual information as a function of the distance between words agrees with the average length of sentences. We suggest that here the change in exponents is related with the average amount of words that human brain is able to store and use. Words with the highest rank are very specific and obviously not shared by all speakers. According to the intersection of the lines approximating the two regimes of \(P(i) \) in Figure 1, the kernel lexicon of the BNC would be formed by 5,000-6,000 words.

![Graph showing the number of different words as a function of the total number of words, \(T \), of the sample. The real number is accompanied by estimations performed with the Zipf's law. We used the two regime frequency observation (Eq. 9; \(N = 6,000 \)) and the Ebeling/Pöschel approximation.](image)

The existence of a kernel lexicon consists raises the question of how small can be a lexicon without drastically empowering communication. Pidgin languages provide examples of very small lexicons. Estimates of the number of items of a pidgin vary from about 300 – 1,500 words, depending on the language [9,10]. The number of lexical items of a speaker of an ordinary language is about 25,000 – 30,000 (clearly not enough for the 588,030 different words of the BNC) while this amount is 1,500 for a Tok Pisin speaker. It has been argued that these 1,500 words can be combined into phrases so as to say anything that can be said in English [11]. As expected, words of such small lexicons are very multifunctional and a circumlocution is often recurring for covering the lexicon gaps. The transition from the exponent \(\alpha_1 \) to \(\alpha_2 \) takes place in the interval of rank \(10^3 < i < 10^4 \). We suggest that common languages also have a lexicon of this kind, hidden by an unlimited specific lexicon. Notice that although the size of the lexicon of a speaker can be very big, what counts for a successful communication are the words shared (stored and used) with the maximum number of speakers, that is to say, the words in the kernel lexicon.

The morphological simplicity and semantic generality that characterize pidgin and other known simplified lexicons [9] respect to complex lexicons can also be identified for the kernel lexicon. Table I summarizes them with examples from the BNC.

We calculated the proportion of words of a text belonging to the kernel lexicon as a function of \(N \),

\[
S(N) = \sum_{i=1}^{N} P(i)
\]

being \(P(i) \) the real probability of the \(i \)-th word) in order to illustrate the importance of the kernel. \(S(1,000) = 0.69, S(4,000) = 0.84, S(5,000) = 0.86 \) and \(S(6,000) = 0.87 \) show how recurring are such words. Deviations for high ranks according to the Zipf law are not erroneous but caused by a different class of words.

ACKNOWLEDGEMENTS

Authors want to thank Susanna Manrubia for helpful discussions and valuable support. This work was supported by grants of the Generalitat de Catalunya (FI/2000-00393, RFC) and the CICYT (PB97-0693, RVS) and the Santa Fe Institute (RVS).

<table>
<thead>
<tr>
<th></th>
<th>kernel lexicon</th>
<th>rest of the lexicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>generality of terms</td>
<td>generic terms rather than specific terms (e.g. is9, see96, group293, live634, know1435 and bird1981)</td>
<td>larger vocabulary in a given domain (e.g. biplane33,903, coda43,48,2, scarp968,727, mycelium111,889, anticoagulants113,286 and microsporum432,607)</td>
</tr>
<tr>
<td>complexity of words</td>
<td>monomorphemic words (e.g. iti, made104, year120, hand216 and mads312)</td>
<td>compounds (e.g. airbreak83,182, ftemp21,098, peachtree137,090, breakdance363,284, fingerlock843,917 and spillway453,615) and morphologically complex words (e.g. childishly46,541, literariness855,855, thoughtlessnes865,489, overindebtedness867,885, proletarianized303,707 and multicultural317,360)</td>
</tr>
</tbody>
</table>

TABLE I. Comparison between the kernel lexicon and the rest of the lexicon. The intervening features were originally devised for comparing simple lexicons (pidgin,creole,...) and complex lexicons. Example words are subindexed by its rank.